4 Oct 2023
Push-Relabel Algorithm
initialize $h(s)=n, \quad h(r)=0 \quad \forall v \neq S$.
initidize $f(u, v)=\left\{\begin{array}{cl}c(u, v) & \text { if } u=s \\ -c(u, v) & \text { if } v=s \\ 0 & \text { otherwise. }\end{array}\right.$
while $J v \neq s, t$ with $x(v)>0$;
let $u \neq t$ be a vertex of positive excess with maximum height among all such vertices.
if \exists edos (uv) with $c(y, v)>f(u, y)$ and $h(u)>h(y)$:
/ Push (u, $)$

$$
\begin{aligned}
& \text { let } \delta=\min \{x(u), c(u, \lambda)-f(u, y)\} \\
& f(u, u) \leftarrow f(u, v)+\delta \quad \delta=c(u, v)-f(u, v) \\
& f(v, u) \in f(v, u)-\delta \\
& \text { "Saturating push" } \\
& \delta<((u, \mu)-\epsilon(u, r) \\
& \text { "nou-saturating push }
\end{aligned}
$$

else:
" Relate (u)

$$
h(u) \leftarrow h(u)+1
$$

endumile
outspent f.

Lemma. If f is a preflow and $v_{0} \neq s$ is a vortex with $x\left(v_{0}\right)>0$ then G_{f} contains a $p^{\text {th }}$ from vo to s made up of edges wing $c(u, y)-f(u, v)>0$.
Proof. Let $E_{f}^{+}=\left\{\left(u, u^{\prime}\right) \mid \quad c\left(u u^{\prime}\right)^{\prime}-f\left(u u^{\prime}\right)>0\right\}$
and $A=\left\{w \left\lvert\, \begin{array}{l}\text { there is a path from } w \text { to } s\} \\ \text { with idses in } E_{f}^{+}\end{array}\right.\right\}$

$$
B=V \backslash A, \quad \lambda_{\text {Lemma assert }}^{\top} v_{0} \in A
$$

By construction $\nexists(u, y) \in E_{f}^{+}$with $u \in B, \quad v \in A$.

$$
\begin{aligned}
& \sum_{v \in B} x(v)=\sum_{v \in B} \sum_{u \in V} f(u, v){\underset{B}{B}}_{(0) \rightarrow 0 \rightarrow 0}(S) \\
& \text { by skew } \\
& \text { symmetry } \\
& =\sum_{u \in V} \sum_{v \in B} f(u, v) \\
& \begin{array}{l}
=\sum_{n \in A} \sum_{v \in B} F(u, v)+\sum_{u \in B} \sum_{v \in B} f(u, v) \\
=-\sum \sum f(v, u)
\end{array} \\
& =-\sum_{v \in B} \sum_{v \in A} f(v, u) \longleftarrow \text { Edger fran } B \text { to } A \\
& \text { are saturated. } \\
& =-\sum_{v \in B} \sum_{u \in A} c(v, u) \leqslant 0
\end{aligned}
$$

$s \in A$, so $x(v) \geqslant 0$ for all $v \in B$.
But $\sum_{v \in B} x(v) \leqslant 0$ so must be that $x(v)=0 \quad \forall v \in B$.
$\therefore \quad v_{0} \in A$ because $x\left(v_{0}\right)>0$.
QED.
Cor. At all times $\forall v, \quad h(v)<2 n$.
Proof. The most ascent time we relabeled v, $x(v)$ was >0. By Lemma, F_{f} lad a goth from v to s with pos. reside cap. on every celge.
$\Theta \longrightarrow(\otimes) \longrightarrow 0 \rightarrow 0 \longrightarrow$ (s)
$\leqslant 2 n-2 \leqslant 2 n-2 . \quad \leqslant n+2 \leqslant n+1 \quad h(s)=n$ or else we woublr't have repleted.

* relabels $\leqslant(2 n-1) n$.

Saturating pushes.
When PUSH (u, ν) saturates ($\left.u_{\nu}\right)$ it means residual sop. of (uv) becomes equal to zero.
Ako, $\quad h(u)=h(v)+1$.
We will not PUSH (uv) again until (uv) has positive residual cap; which happens after Punt (v, u).
height $h^{3} \geqslant h+1$ or height $l i+1 \geqslant h+2$
height h al u o jor height h
Between any tho saturating perches of (u, v) $h(v)$ increases by $2 \Longrightarrow$ at most n saturating pushes per (oriented) edge. $\leqslant 2 \mathrm{mn}$ saturation pushes total. Non-saturativg pushes Let $H=\max _{v \neq s: x(v)>0}\{h(v)\}$.

$$
v \neq s: x(v)>0
$$

Divide exceution into phases when t is constant
H can only increase during relabels. $\left(\leqslant Q_{n-1}\right) n$ times.)

* phases $\leq 2(2 n-1) n$.

Vertices $v \neq s$ will be the source of a ron-saturating push at most once per phase.
$\Longrightarrow \quad \leq 2(2 n-1) n(n-1) \quad$ noz-saturating pusher.

