2 Pct 2023 Push-Relabel Algorithm
Announcement:

- Midterm will be take-home test, 6-10 Nov. (You choose a $48-h r$ subhterval.)

Def. A preflow with vertex sect V satisfies
(i) [skew-symmetry] $f(u, v)+f(v, u)=0 \quad \forall u, v$
(ii) [semi-conservation]

$$
\text { Lion] } \sum_{u \in v} f(v, v) \geqslant 0 \quad \forall v \neq 5
$$

$x(v)$ called the "excess of v."
Aside: a circulation is $f: V^{2} \rightarrow \mathbb{R}$ satisfying $\sum_{u \in V} F(u, v)=0 \quad \forall v \in V$, including $\begin{aligned} & v=s, t .\end{aligned}$
A preftow is feasible if it also satisfies
(iii) [capacity] $\quad f(u, v) \leqslant c(u, v) \quad \forall u, v$.

The push-relabel alsoithim also uses a function $h: V \longrightarrow \mathbb{N}$ ("height function") satisfying:
(iv) [boundary condition] $h(s) i n, \quad h(t)=0$
(v) [steeples condition] If $((u, v)-f(u, v)>0$ then $h(u) \leqslant h(v)+1$.
If ρ is a staple path from s to t thin ρ contains $\leqslant n$ vertices, $\leqslant n-1$ edges. In $\leqslant n-1$ hops, p gees from height n to height ϕ, \therefore at least one edge (u, v) in p satisfies $h(u)-h(v)>1$.
By steepness condition, this (u, ν) must be saturated.

If $S=\left\{\begin{array}{l}\text { vertices reachable from s using a path } \\ \text { of edos with } c(u, v)-f(u, \lambda)>0\end{array}\right\}$ of edges with $c(u, v)-f(u, v)>0$

$$
T=V \backslash S
$$

then (S, T) is a cut made up of saturated edges.
Corollary. JF f is a flow and h is a height function satisfying boundary and steepness conditions wort f, then f is a maximum flow.

Push-Relabel algorithm
initialize $h(s)=n, \quad h(r)=0 \quad \forall v \neq S$.
initidize $f(u, v)=\left\{\begin{array}{cl}c(u, v) & \text { if } u=s \\ -c(u, v) & \text { if } v=s \\ 0 & \text { otherwise. }\end{array}\right.$
while I $v \neq s, t$ with $x(v)>0$:
led $u \neq t$ be a vertex of positive excess with maximum height among all such vertices.
if \exists edge (u, v) with $c(u, v)>f(u, y)$ and $h(u)>h(v)$:
// Push (u, $)^{\text {) }}$

$$
\begin{aligned}
& \text { let } \delta=\min \{x(u), c(u, v)-f(u, v)\} \\
& \begin{aligned}
f(u,)) \leftarrow f(u, v)+\delta & \delta=c(u, v)-f(u, v) \\
f(v, u) \in f(v, u)-\delta & \\
& \\
& \\
& \\
& <\text { saturating push" } c(u, v)-f(u, v) \\
& \text { "nou-saturati) }
\end{aligned} \\
&
\end{aligned}
$$

else:

$$
\begin{aligned}
& " \operatorname{RELABEL}(u) \\
& h(u) \leftarrow h(u)+1
\end{aligned}
$$

enduhile
outant f.

Correctness. Inductively verify that properties (i)-(v) above are loop invariants. Then apply corollary.

Running tine: can be implemented to do $O(1)$ operations per wiste-6ap iteration.

1
Lemma- If f is a preflow, $v \neq s$ is a vertex with $x(u)>0$, then G_{f} contains a path from v to s made up of edges with positive residual capacity.
Proof. Let $A=\left\{u \left\lvert\, \begin{array}{l}\sigma_{t} \text { contains a } u \rightarrow s \\ \text { positive roth with } \\ \text { residual cop edges }\end{array}\right.\right\}$. positive residual cop edges

$$
B=V \backslash A
$$

