27 Sep 2023 Max-Flow Min-Cut Theorem
Ford-Fukerson Algorithm

Announcements.
(1) Homework 3 to ba relapsed Fri, due a week from Fri, shorter than usual.
(2) Email me and Shawn (rdk2, so 396) if you must switch groups.
(3) In class midterm: In considering replacing it with a take-home, the week of Nov 6-10. (Flexible start/end.) Please email me if you're not happy about this.

Recap. Show satrifies $\quad f(u, v)+f(u, u)=0$

$$
\sum_{v \in V} f(u, v)=0 \quad \forall u \notin\{s, t\} .
$$

"Feasible" $\quad f(u, r) \leqslant c(u, j) \quad \forall(u, v)$

Residual graph G_{f}, f feasible f bu in G.
Capacities $\quad c_{f}(u, v)=c(u, v)-F(u, v)$
augmenting poith: path from s to t whose edges have strictly positive readual capacity.

Def. An sit int in flow network $G=(V, s, t,<)$ is a partition of V into S, T with $\int \in S, t \in T$.

For vertex sets Q, R let

$$
\begin{array}{ll}
f(Q, R)=\sum_{u \in Q} \sum_{v \in R} f(u, v) & \text { net flow } Q \rightarrow R \\
c(Q, R)=\sum_{u \in Q} \sum_{v \in R} c(u, v) & \text { aggregate <apacioy } Q \rightarrow R
\end{array}
$$

Observe: (a) R_{1}, R_{2} disjoint $\Rightarrow f\left(Q, R_{1} \cup R_{2}\right)=f\left(Q, R_{1}\right)+f\left(Q, R_{2}\right)$
(b) $f(Q, Q)=0 \quad \forall Q \in V$
... by skew-symmetry.
Lemma. If f is any flow and S,T is any st cut,

$$
f(S, T)=\operatorname{val}(f)
$$

If f feasible,

$$
\operatorname{val}(F) \leqslant c(S, T)
$$

and equality holds F and only if $f(u, v)=c(u, v)$ for all $u \in S, \quad v \in T$. ("S,T is saturated by f_{1} ")
Poof. By properties (a), (b) above,

$$
\begin{aligned}
f(S, T)=f(S, T) & +f(S, S)=f(S, T \cup S)=f(S, V) \\
& =\sum_{u \in S}\left(\sum_{v \in V} f(u, v)\right. \text { inner sum equals zero } \\
& =\sum_{v e V} f(S, v)=\operatorname{val}(f) .
\end{aligned}
$$

Inequality $\operatorname{val}(G) \leqslant c(S, T)$ follows from for $u+S, v \in T$

$$
\begin{aligned}
& \forall u, v \quad f(u, v) \leqslant(u, v) c \sum_{u \in S} \sum_{v \in T} f(u, v) \leqslant \sum_{u \in S} \sum_{v \in T}^{\text {this is strict }} c(u, v)=c(S, T) \\
& \operatorname{Val}(f)
\end{aligned}
$$

Theorem. (Max-flow Min-cut) for a flow network G and a feasible flow f, TFAE:
(i)kf f is an maximum flow
$\operatorname{textanor}^{20}$
version $\left(\begin{array}{c}\binom{v}{i i} \\ (i i)\end{array}\right]$ there is no augmenting path in G_{f}
(iii) there exists a sit cut with $c(S, T)=\operatorname{val}(F)$

Proof. First (iv) \Rightarrow (iii) obolus. To prove (iii) \rightarrow (iv) assume f, S, T satisfy (ali) and assume
S^{*}, T^{*} is any st cut f minimum capacity.

$$
\left.c\left(S^{*}, J^{*}\right) \leqslant c(S, T) \quad \text { (def of } S^{*}, T^{*}\right)
$$

$$
c(S, T)=\operatorname{val}(F) \leqslant c\left(S^{*}, T^{*}\right) \text { lemma above }
$$

Hence $\quad\left(S^{*}, T^{*}\right)=c(S, T)$ we equal, fo S, T is a suiaiman siT cut satisfying $\operatorname{val}(F)=c(S, T)$ as required by (iv).
For $(i) \Rightarrow\binom{i}{i i}$ we pare $(\neg i i) \Rightarrow(7 i)$.
IE G_{f} hals aug path l, let

$$
\delta(P)=\min \{c(u, \lambda)-f(u,) \mid(u, N) \text { an edge of } P\}
$$

Then $f+\delta(P) \cdot f^{p}$ is ats. a feasible flow, its value is $\operatorname{val}(f)+\delta(P)>\operatorname{val}(F)$, so f is not a max flaw.

For $(i i) \Rightarrow$ (iii): define an augmenting walk to be a sequence $s=u_{0}, u_{1}, u_{2}, \ldots, u_{k}$ of vertices, sit. residual $c \alpha>0$ for all $\left(u_{i}, u_{i+1}\right), 0 \leqslant i<k$. $c\left(u_{i}, u_{i+1}\right)-f\left(u_{i}, u_{i+1}\right)$
Let $S=\{u \mid \exists$ an augmenting walk ending at u\} ~

$$
T=V \backslash S
$$

Note $s \in S$ Le cause (s) is augmenting walk
$t \in T$ because \nexists augmenting port in G_{f}.
Every (u, v) win $u \in S$, veT has zeno residual capacity. This is because \exists augmenting walk $s=u_{0}, u_{1}, \ldots, u_{k}=u$ bat $u_{0}, u_{V}, \ldots, u_{k}, u_{k+1}=v$ is not an augmenting walk. $\Rightarrow(u, t)$ has ≤ 0 residual capacity. $\therefore=0$
We have an st cut which is saturated by f, so $c(S, T)=\operatorname{val}(F)$ by lemma above.

Lastly, for $(i i i) \Rightarrow(i)$:
$\left.\begin{array}{c}\text { if } F \text { is feasilk flow, } \\ S_{T} T \text { is sit cut }\end{array}\right\}$
and $\operatorname{val}(F)=c(S, T)\}$ Condition (iii)
then for any feasible Flow f^{*},

$$
\operatorname{val}\left(f^{*}\right) \& c(S T)=\operatorname{val}(f)
$$

by Lemma
$\therefore \operatorname{Val}(f)$ is the maximum value of a feasible Flow in G.

