18 Sep 2023 Parallel Determisant Algorithm
Announcement: Office hows w 9/20 start at 4pm.

An algebraic branching program consists of:
(a) a directed acyclic graph (DAO) with vertices v_{1}, \ldots, v_{n}
edges $\left(v_{i}, v_{j}\right)$ each satisfying $i<j$.
(6) a degree -1 multivariate pilynomial $\ell(e)$ on each edge, in some ser of variables x_{1}, \ldots, x_{m}.
The polynomial cemented by ABP, IT, is

$$
f^{\pi}\left(x_{1}, \ldots, x_{m}\right):=\sum_{\substack{p o t h s \\ v_{1} \longrightarrow v_{n}}} \prod_{e \in P} l(e)
$$

Example- (probability of HMM producing string)
If we Lave HMM with state set S, stertires state $S F S$. aphopet Σ, transition probs $p i j(i, j \in S)$ emission prods $q_{i \sigma} \quad(i \in S, \sigma \in \Sigma)$
the probability of producing string $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$ is $f^{\pi s}\left(p_{11}, p_{12}, \ldots, \rho_{n n}, q_{1}, \ldots, q_{n m}\right)$ where T is

A dynamic program to evaluate f^{π} :
define $T \ll j<$ is the induced labeled sutgraph of π on vertex set $\left\{v_{1}, \ldots, v_{j}\right\}$.
The recursive firmula for $f^{\pi\langle j}$ is

$$
\begin{aligned}
& f^{\pi\langle 1\rangle}=1 \\
& f^{\pi\langle j\rangle}=\sum_{e=\left(v_{i}, v_{j}\right)} l(e) \cdot f^{\pi\langle i\rangle}
\end{aligned}
$$

For algebraic wanching program TI form matrix $M(\pi)$ where

$$
M(\pi)_{i j}= \begin{cases}l\left(v_{i}, v_{j}\right) & \text { if }\left(v_{i}, v_{j}\right) \in E \\ 1 & \text { if } i=j=n \\ \varnothing & \text { otherwise }\end{cases}
$$

Then f^{π} is the $(1, n)$ entry of $M(\pi)^{n-1}$.
To evaluate $f^{\pi}\left(a_{1}, \ldots, a_{m}\right)$ where $a_{1}, \ldots, a_{m} \in \mathbb{\mathbb { Z }}$, substitute a_{1}, \ldots, a_{m} for variables x_{1}, \ldots, x_{m}, obtain matrix $M=M(\pi ; \vec{a})$, compute

$$
M^{2}, M^{4}, M^{8}, M^{10}, \ldots, M^{2^{k}} \in \text { larger power of } 2
$$

with $n-1$ in binary and the digits of $n-1$ tell you a subset of $\left\{M, M^{2}, \cdots, M^{2^{k}}\right\}$ whose product is M^{n-1}.
Evaluating f^{π} is $\leqslant 2 \log (n)$ mat not's, so $O\left(\log ^{2}-\right)$ depth $O($ pol $(n))$ work.

Reducing determinant to evaluating poly(n)-size ABP.
Permutations as cycle diagrams.
$E_{19 .} 1$ - 3
$2 \rightarrow 5$
$3 \rightarrow 1$
$4 \rightarrow 4$
$5 \rightarrow 6$
$6 \rightarrow 2$

04
"closed walk"
Def. A slow in a directed graph G is a sequence of vertices $C=v_{0}, v_{1}, v_{2}, \ldots, v_{k}=v_{0}$ sit. $\left(v_{i}, v_{i+1}\right) \in E(G)$ for all i.
If G has edge (bels, the weight of C is the product of its labels. The kngth of C
If $V(G)$ is totally ordered, is the of edges. a chow sequence in G is a sequence of claws $C_{1}, C_{2}, \ldots, C_{k}$ such that
a. The first and last vertex in reach chow is its lowest-numberd vertex, called the "head"
b. The heads of chows are a

π_{4} strictly increasing sequence in $V(G)$.

The weight of a chow sequence is the product of the weights of the chows.
The length of a chow sequence is the sum of its lengths.
The sigh of chow sequence $C_{1, \ldots,} C_{k}$ is $(-1)^{n-k} \pi$ length n chows

