15 Sep 2023 Parallel Algorithms, Algebraic Branching Programs

Announce meats.
(1) HW2 "re-mateling questionnaire": see Ed for link. Fill out by 20:00 sunday to re-match.
(2) HWZ is on Gradesupe. Due in 2 weeks, again 4 problems.

Recall: Wont to odd binary numbers expressed by bit strings $a, b \in\{0,1\}^{n}$, using parallel algonttin.
This reduces to computing the "carry bis" $c_{i}:= \begin{cases}9 & \text { if the numbers encoded by } a_{i} \ldots a_{n} \\ \text { and } b_{i}-\ldots b_{n} \\ \text { or gum of to } 2^{n-i+1} \\ \varnothing & \text { otherwise. }\end{cases}$

+ $\sum=\{\phi, 1, *\}$ and let Jr be the following set of 3 functions $\sum \rightarrow \sum$.
- $g_{0}=$ constant function \varnothing
$-g_{1}=$

$$
1
$$

- $i=$ identity function.

Note IH closed under function composition.
Then set $f_{i}=\left\{\begin{array}{lll}g_{0} & \text { if } & a_{i}=b_{i}=0 \\ i & \text { if } & a_{i}+b_{i}=1 \\ g_{1} & \text { if } & a_{i}=b_{i}=1\end{array}\right.$

Then $\quad c_{i}=f_{i+1} \circ t_{i+2} \circ \ldots \circ f_{n}(0)$

Step (. Compute the (2-bit) regreseriation of the function at each node of this tree.
$O(n)$ wok, $O(\log n)$ depth
Step 2. In parallel fir each i compute $f_{i+1} f_{i+2} \ldots \ldots f_{n}(0)$ in $O(\log n)$ work, $O(\log \log n)$ depth.
Tate): $O(n \operatorname{los} n)$ work, $O(\log n)$ depth.

Integer mut. Compute partial products of tun binary numbers in $O\left(n^{2}\right)$ work, $O(1)$ depth. Now mut reduces to adding n numbers of $\leqslant 2 n$ bits.

Theses a $O(n)$ work, $O(1)$ clepth reduction from adding 3 binary numbers with n digits each to adding 2 binary numbers with $n+1$ digits each.

Add without carves Blue sum + Red sum ($5 n+1$ dig .s)
After $\log _{3 / 2}(n)$ rounds of reorganizing, we get just 2 numbers, each with $\leqslant n+\log _{3 / 2}(n)$ digits, and add them using preceding algorithm.
work $O\left(n^{2}+n \log n\right)$
Depth $O(\log n)$

Matrix multiplication. Two $n \times n$ matrices with entries of $\leq O(n)$ bits, just compute n^{2} dot pridncts in parallel. Each dot purdrect is
n multi's that can be done in parallel $O\left(n^{2} \log n\right)$ work $O(1 . g n)$ deal
followed by adding n numbers of $O(G)$ bits $O(n \log n)$ work $O(\lg n)$ depth
Total: $O\left(n^{4} \log n\right)$ work, $O(\log n)$ depth.

Algebraic Branching Programs. An ABP is a diagram consisting of a directed acyclic graph (DAG) $G=(v, E)$, with $V=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$, with every edge $\left(v_{i}, v_{j}\right) \in E$ satisfying $v_{i}<v_{j}$. Plus, each edge is labeled with a linear form (dearce-1 polynomial) in variables $x_{1}, \ldots, x_{m s}$.

$$
\begin{aligned}
f^{\pi}= & 3 x_{1}-3 x_{1} x_{2}-3 x_{1} x_{2} \\
& -2 x_{2}^{2}+4 x_{2}
\end{aligned}
$$

If π is an $A B P$, the polynomial f^{π}
is the elynomial

$$
f^{\pi}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\substack{\rho \\ \text { from } \\ \text { path } \\ v_{0} \\ \text { to } v_{n m}}} \prod_{e \in \rho} \text { label (e) }
$$

