13 Se 2023 Parallel Algorithms, Part I

Recap:

substitute randan * for each $x_{i j}$
yes no no perfect matching

$$
\operatorname{det}(B)=0 ?
$$

\exists perfect matching
T. bund $\operatorname{Pr}($ fake resotire) use Schwarz-Zippel:

If $P\left(X_{1}, \ldots, X_{m}\right)$ is a polynomial aver free \mathbb{F} and max degree of any variable in any monomial of l is d, and $S \subseteq \mathbb{F}$ is a sub t of s elements, then when we subset randan elements of S for $X_{1}, \ldots, X_{n}, \quad \operatorname{lr}(\rho=0) \leqslant \frac{m d}{s}$.

In lovass Alg, use a field large enough that S can be taken to have $\geqslant \frac{n^{2}}{\delta}$ elements. For dererminant p-lynomial $d=1$ (determinant is "multilinear") and $m=\#$ variables in wan x $=$ * edges in $G \leqslant n^{2}$ $\frac{m d}{s} \leqslant \frac{n^{2} \cdot 1}{n^{2} / \delta}=\delta$.
$\operatorname{Pr}($ Lovasz yields false negative) $\leqslant \delta$.

Def. The exponent of matrix multiplication, ω, is the smallest constant C such that \exists algorithms to multiply two $n \times n$ matrices in $O\left(n^{c+\varepsilon}\right)$ time for all $\varepsilon>0$.

Facts. The running time for

- matrix inversion
- determinant
- LU factorization
are all $O\left(n^{\omega+\varepsilon}\right)$ for all $\varepsilon>0$.
We know $\omega<2.373$ (Atman e Williams)
and $\omega \geqslant 2$
Lovasz runs in $O\left(n^{\omega+\varepsilon}\right)=O\left(n^{2,373}\right)$.
Compare with Hoperaft-Karp: $O\left(m n^{0.5}\right)=O\left(n^{2.5}\right)$.

Parallel Algorithms
A Boolean circuit is a DAG each of whose nodes is annotated with an operation:

1. Read $i^{\text {th }}$ bit of input (ϕ incoming edges)
2. NOT (must have exactly 1 incoming edge),
3. AND (≥ 1 inioning ese)
4. $O R$

Two properties that relate to complexity:

1. "Work": total \# of nobles in the DAG
2. "depth": (corresponds to parallel running time) $=$ minimum $*$ of layers $L_{0}, L_{1, \ldots}, L_{d}$ such that nodes can be partitioned into layer with every else pointing from L_{i} to L_{j} with $i<j$.
$=$ \# edges in the longest path of the DAG.

Adding 2 binary numbers in parallel.
"cares" $c_{1} c_{2} \ldots c_{n}=0$

$$
\begin{aligned}
& \frac{a_{1} a_{2} \ldots}{b_{1} b_{2} \ldots} \begin{array}{l}
a_{n} \\
s_{0} \ldots
\end{array} \quad a_{n}, b_{i} \in\{0,1\} \\
& s_{i}=a_{i} \oplus b: \oplus c_{i}
\end{aligned}
$$

In parallel in $O(1)$, you can conclude:

$$
c_{1}=c_{2}=c_{3}^{11} \quad c_{4}=c_{5}=c_{6}=c_{7}^{11}
$$

After $O\left(\omega_{S} n\right)$ rounds of "looking ahead" all carry bits are known.
$O(n$ bs $n)$ work and $O(\log n)$ depth.

