11 Ser 2023 Algebraic Algorithms for Bipartite Matching
Announcement. Billy Jin,"Advice-Augmented Algorithms for Online Matching and
Resource Allocation"
Gates 114, $3: 45 \mathrm{pm}$, today

Permanent and Determinant
If $A=\left(A_{i j}\right)$ is an $n \times n$ square matrix

$$
\begin{aligned}
& \operatorname{per}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} A_{i, \sigma(i)} \text { the set of permutations of }[n] \text {. }
\end{aligned}
$$

If $G=(L, R, E)$ is bipartite with

$$
L=\left\{u_{1}, \ldots, u_{n}\right\} \quad R=\left\{v_{1}, \ldots, v_{n}\right\}
$$

Let

$$
A_{i j}=\left\{\begin{array}{lll}
1 & \text { if } & \left(u_{i}, v_{j}\right) \in E \\
0 & \text { if } & \left(u_{i}, v_{j}\right) \notin E
\end{array}\right.
$$

Then $\prod_{i=1}^{n} A_{i, \sigma(i)}= \begin{cases}1 & \text { if }\left\{\left(u_{i}, v_{(i)}\right)\right\} \text { is a perfect matching } \\ \varnothing & \text { otherwise }\end{cases}$
$\operatorname{per}(A)=\#$ of perfect matchings in G.
亿 \#P: the complexity class whose \uparrow complete problems are the two sides of this equation
$\operatorname{det}(A)=$ a weird quantity that "counts" perfect matching "with cancellations."

Nevertheless $\operatorname{det}(A)$ nod 2 tells us if G has an even or odd $\#$ of perfect matchings.

Consider another matrix B associated with G_{1}

$$
B_{i j}=\left\{\begin{array}{lll}
X_{i j} & \text { if } & \left(u_{i}, v_{j}\right) \in E \\
0 & \text { if } & \left(u_{i}, v_{j}\right) \notin E
\end{array}\right.
$$

G

$$
B=\left(\begin{array}{lll}
x_{11} & x_{12} & 0 \\
x_{21} & 0 & x_{23} \\
0 & x_{32} & x_{33}
\end{array}\right)
$$

Observe $\operatorname{det}(B) \neq 0$ if and only if G has a perfect matching.

Lovász's Algorithm for Perfect Matching Decision Problem
Form the matrix B.
Let F be a field with at least n^{2} / δ elements. Substitute independent uniformly random elements of \mathbb{F} for the variables in B. Call this \widehat{B}. Evaluate $\operatorname{det}(\hat{\beta})$.
If $\operatorname{det}(\hat{B})=0$, output "no perfect matching." Else output "a perfect matching exists."

This also. has no false positives. If it says a perfect matching exists, there really is one.

It can have false negatives. Try to prove Pr (false negative) is low.

Schwartz-Zippel Lemme if $P\left(X_{1}, \ldots, X_{m}\right)$ is a nonzero multivariate degree of polynomial over a field, F, and S is a subset of F with s elements, and we subsitute random, indef elements of S for $X_{1, \ldots}, X_{i n}$

$$
\operatorname{Pr}(\rho \text { valuates to zero }) \leqslant \frac{\mathrm{m} \cdot \mathrm{~d}}{\mathrm{~s}}
$$

Proof. (induction on m) if $m=1, p$ is a noneors degree d polynomial, it has $\leqslant d$ roots. So $\operatorname{Pr}(\rho$ val's to Zero $) \leqslant d / s$.

Far $m>1$,

$$
P\left(X_{1, \ldots,}^{m>1}, X_{n}\right)=\sum_{i=0}^{d} Q_{i}\left(X_{1}, \ldots, X_{m-1}\right) \cdot X_{m}^{i}
$$

For some it $\{0, \ldots, d\} \quad Q_{i} \neq 0$.
Let c be greatest such i.
When we substitute rareban $X_{1, \ldots}, X_{m}$
Case 1. $Q_{C}\left(X_{1}, \ldots, X_{m-1}\right)=0$.

$$
\operatorname{lr}(\text { this event }) \leftarrow \frac{(m-1) \cdot d}{s}
$$

(IND HYP)
(abe 2, $Q_{c}\left(X_{1}, \ldots, X_{m-1}\right) \neq 0$ bit

$$
P\left(x_{1}, \ldots, x_{m}\right)=0 .
$$

That can only hepper if X_{m} is one of the roots of

$$
\sum_{i=0}^{c} Q_{i}\left(x_{1} \ldots x_{m-1}\right) x_{m}^{i}
$$

There are of most c roots.

$$
\operatorname{lr}(\text { this event }) \leqslant \frac{c}{s} \leqslant \frac{d}{s} \text {. }
$$

Case 3. $P\left(x_{1}, \ldots, x_{i}\right) \neq 0$,
Sum probabilities of Case 1 , case $2 \Rightarrow$ OED.

