8 Sep 2023 Analysis of $\operatorname{RANKING}$

1. Sample a uniformly random total ordering of L
2. Whenever $v \in R$ arrives, if it has at least one free neigh tor, match to the one that comes earliest in this ordering.

$$
\begin{array}{llrl}
\max & \sum_{(a, v) \in t} x_{u v} & \leqslant \min & \sum_{u \in L} y_{u}+\sum_{v \in R} y_{v} \\
\text { sit. } & \sum_{v} x_{u v} \leqslant 1 \quad \forall u \in L & \text { sit. } & y_{u}+y_{v} \geqslant 1 \quad \forall(u, v) \in E \\
& \sum_{u} x_{u v} \leqslant 1 \quad \forall v \in R & & y_{u}, y_{v} \geqslant 0 \quad \forall a \in L, v \in R \\
& &
\end{array}
$$

In terms of duality, here's why GREEDY is a 2-appraximation.
As you run GREEDY each time edge (uv) is selected it "yields \$2 of revenue" which we "reinvest" by patting $\$ 1$ on $u, \$ 1$ on v. (Translation: set $y_{u}=y_{v}=1$)

Why does every edge (u, v) satisfy $y_{u}+y_{v} \geqslant 1$?
case 1. When v arrived, GREENy found a match for it.
\rightarrow it invested $\$ 1$ in v, $y_{0}=1$.
Case 2 . No match for v urns available.
$\Longrightarrow u$ was already nakkhed, $y_{k}=1$.

$$
2 \cdot|A L G|=\text { toped investment } \geqslant \mid O P T \text {. }
$$

Analysis plan for RANKING.

1. When (u, v) is selected we have $\$\left(\frac{e}{e-1}\right) \approx \$ 1.58$ to divide between y_{u} and y_{v}.
2. We'll show how to do it randomly such that $\left(\mathbb{E}\left[y_{u}+y_{v}\right] \geqslant 1\right)$ for every edge (u, v). (whether selected for matching or wot.) Then if we define $\tilde{y}_{u}=\mathbb{E}\left[y_{u}\right], \tilde{y}_{v}=\mathbb{E}\left[y_{v}\right]$,

$$
\begin{aligned}
\frac{e}{e-1} \cdot \mathbb{E}[A L G] & =\mathbb{E}\left[t_{\text {total }} \text { investment }\right] \\
& =\sum \widetilde{y}_{u}+\sum \widetilde{y}_{v} \geqslant \text { OPT }
\end{aligned}
$$

$\tau_{\text {weak duality }}$
Reintupetation of RANKING.

1. For all $u \in L$, sample $Z_{u} \in[0,1]$ uniformly at random. (independently for all U)
2. When $v \in R$ arrives, if at last one neighbor is free, match v to free u with smallest Z_{u}.
3. Set $y_{u}=\frac{e}{e-1} \cdot h\left(z_{u}\right) \quad h(z)=e^{z-1}$

$$
y_{v}=\frac{e}{e-1} \cdot\left[1-h\left(z_{u}\right)\right]
$$

Analysis needs to prove $\mathbb{E}\left[y_{u}+y_{v}\right] \geqslant 1$ for all $(u, v) \in E$, Fox ane edge (u, v). Fix random $Z_{w} \forall w \neq u$.
Imagine re-running RANKING on $G \backslash\{u\}$.
"Critical value" $Z^{c}:= \begin{cases}Z_{w} & \text { f RANkING on } G \backslash\{u\} \\ \text { matched } v \text { to } w . \\ 1 & \text { f } v \text { remained unmatched. }\end{cases}$

Obs 1. If $Z_{u}<z^{c}$ then u will be matched by RANKING on G.
why? Ether u was matched before v arrived or its the lowest Z-clue among v's free neighbors.
Cor. $\mathbb{E}\left[y_{u}\right] \geqslant \frac{e}{e-1} \int_{0}^{z^{c}} h(z) d z$
Old 2. $y_{v} \geqslant \frac{e}{e^{-1}}\left(1-h\left(z^{c}\right)\right)$ hods of the end of riming RANKING.
If v gets machid to u^{\prime} the inca sous

$$
\frac{e}{e-1}\left(1-h\left(Z_{i^{\prime}}\right)\right) \geq \frac{e}{e-1}\left(1-h\left(z^{c}\right)\right)
$$

III

$$
\begin{array}{rlr}
h\left(z_{u^{\prime}}\right) & \leqslant h\left(z^{c}\right) & \left(\begin{array}{ccc}
v & \text { chooses from } \\
\text { a sweller } & \text { ser of } \\
\text { options in } & G\{u\}
\end{array}\right) \\
Z_{u^{\prime}} & \leqslant z^{c} \quad r
\end{array}
$$

$$
0 s_{s} 1+a_{s} 2 \cdot \quad \begin{aligned}
& z_{u^{\prime}} \leqslant z^{c} \\
& \mathbb{E}\left[y_{u}\right]+\mathbb{E}\left[y_{v}\right] \geqslant \frac{e}{e-1}\left[\begin{array}{l}
\text { potions in Gl\{u\} ~ } \\
\int_{0}^{z^{c}} h(z) d z+1-h\left(z^{c}\right)
\end{array}\right]
\end{aligned}
$$

Our choice of h makes this equal to $1-\frac{1}{e}$ for every z^{c}.

