8 Sep 2023 Analysis of RANKING

1. Sample a uniformly random total ordering of L

2. Whenever VER arrives, if it has at least one free neighbor, match

to the one that comes earliest

in this ordering.

max 2 Xuv (u,v) & E $\leq \min \sum_{u \in L} y_u + \sum_{v \in R} y_v$ s.t. $\sum_{v} x_{uv} \leq 1$ the s.t. $y_{u} + y_{v} \geq 1$ the E Z xur & 1 VveR yu,y.≥0 Haelver ×uv ≥ O

In terms of shaltby, here's why GAEEDY is a 2-approximation. As you run GREEDY each time edge (up) is selected it "yields \$2 of revenue" which we "reinvest" by patting \$1 on U, \$1 on V. (Translation: set $y_u = y_v = 1$)

Why dees every edge (u,v) satisfy yu+y, ≥1? case 1. When V arrived, GREEDY found a match for tV. \rightarrow it invested \$1 in y, $y_{\nu} = 1$. Case 2. No match for V was available.) U was already watched, $y_{\mu}=1$. 2. |ALG| = total investment > 10PTf.

Analysis plan for RANKING.

1. When
$$(u,v)$$
 is selected we have $\$(\frac{e}{e_1}) \approx \1.53
to divide between y_u and y_v .
2. We'll show how to do it vandonly such
that $(E[y_u + y_v] \ge 1)$ for every edge (y_v) .
(whether selected for motiching or wet.)
Then if we define $\tilde{y}_u = E[y_u]$, $\tilde{y}_v = E[y_v]$,
 $\frac{e}{e^{-1}} \cdot E[ALG] = E[total investment]$
 $= \sum \tilde{y}_u + \sum \tilde{y}_v \ge OPT$
 $t weak dentry$

Reintropretation of RANKING.
i. For all
$$u \in L$$
, sample $Z_u \in [0,1]$ uniformly at random.
(independently for all u)
2. When $V \in R$ arrives, if at least one neighbor
is free, watch v to free u with
swellest Z_u :
3. Set $y_u = e^{-1} \cdot h(Z_u) - h(z) = e^{2-1}$
 $y_v = e^{-1} \cdot [1 - h(Z_u)]$

Analysis needs to prive
$$\mathbb{E}[y_u + y_v] \ge 1$$
 for all $(u,v) \in \mathbb{E}$.
Fix one edge (u,v) . Fix random $\mathbb{Z}_w \quad \forall w \ne u$.
Jmagine re-running RANKING on $\mathbb{G}\setminus\{u\}$.
"Gibical value" $\mathbb{Z}^{\mathbb{C}} := \int \mathbb{Z}_w \quad \text{frankling on } \mathbb{G}\setminus\{u\}$
moduled v to w .
 $1 \quad \text{franched } v \text{ to } w$.

Obs 1. If Zu < z then u will be matched by RAWKING on G. Why? Ether u was motched before v arrived or its the lowest Z-value among v's free neighbors. $\underbrace{\operatorname{Cor}}_{\mathrm{er}} = \underbrace{\operatorname{E}}_{y_{u}} \underbrace{\operatorname{E}}_{e_{-1}} \underbrace{\operatorname{E}}_{h(z)} \underbrace{\operatorname{L}}_{z} \underbrace{\operatorname{L}}_{z}$ $\underbrace{\delta_{Ls} \ a}_{V} \quad \underbrace{y_{v} \geq \frac{e}{e_{1}} \left(1 - h(e^{c})\right)}_{e_{1}} hds$ the end of running RANKING, of IF V gets mached to le the ineq says $\frac{e}{e^{-1}}\left(1-h(Z_{n'})\right) \geq \frac{e}{e^{-1}}\left(1-h(z^{c})\right)$ $h(Z_{u'}) \leq h(z^{c})$ (v chooces from) c smaller set of gobtens in G/(4) $\frac{11}{2u'} \leqslant z^{C}$ $O_{55} = \frac{1}{1 + O_{5}} = \frac$ Our choice of h makes this I equal to 1-te for every 2.