6 Sep 2023 Online Matching
Announcement: problem (ab) is modified; see Ed Discussions.
If still waitlisted: stay tuned, I am emailing Student Services today.

$$
G=(L, R, E)
$$

$L=\left\{\begin{array}{c}\text { vertices always present in } G\} \\ \text { eeg. time sots in a calchdap }\end{array}\right\}$
$R=\left\{\begin{array}{l}\text { egg. time sibts in a calendar } \\ \text { vertices that arrive one at a time }\}\end{array}\right.$
Upon arrival, each vortex in R specifies its set of neighbors and must be matched to one of them (or kit unmatched) irrevocably before the next arrival.
Objective: maximize the number of edges in the matching.

An algorithm is C-compettive if it is always within a factor C of the optimum on every input instance.
i.e. letting ALG $=$ * edges in the alp's matching

OPT $=$ A edges in max matching
$O P T \leqslant c \cdot A L G$

Deterministic alg's can't be better than 2 -competitive.

Mon $\mathrm{O}-\cdots 1^{\text {st }}$
Wed $0=-\cdots$ and

$$
\begin{aligned}
& O P T=2 \\
& A L G=1
\end{aligned}
$$

A randomized alg. on this graph can toss a coin, and get $A L G=\left\{\begin{array}{llll}1 & w & \text { prob, } & 1 / 2 \\ 2 & w & \text { prob } & 1 / 2\end{array}\right.$

$$
\left.\begin{array}{l}
\mathbb{E}[A L G]=3 / 2 \\
O P T=2
\end{array}\right\} \frac{4}{3} \text {-con-petitive, }
$$ on this particular graph

Def. An algorithm for online matching is greedy * it always finds a watch for each vertex that has at least one free neighbor when it arrives.

Prop. Any greedy online matching algorithm is 2 -competitive.

Prot. Say the also. outputs M and M^{*} is the max matching.
Map M^{*} to M as follows.
For $(u, v) \in M l^{*}$ and $(u, v) \in M$ then

$$
f(u, v)=(u, v)
$$

For $(u, v) \in M^{*}$ and $(u, v) \notin M$ but $\left(u^{\prime}, v\right) \in M$ $f(u, v)=\left(u^{\prime}, v\right)$.

For $(u, v)=M^{*}, \quad(u, v) \notin M, v$ is froe in M. Then $\exists\left(u, v^{\prime}\right) \in M$ by greedy property.

$$
f(u, v)=\left(u, v^{\prime}\right)
$$

We've constructed $f: M \stackrel{*}{\longrightarrow} M$ with the property $\forall e \in M^{*}, \quad e$ and $f(e)$ have at least one endpoint in common.

For every $e^{\prime} \in M$, $f^{-1}\left(e^{\prime}\right)$ has at most two elements: an edge touching left endpoint of e^{\prime} and ore touching the right endpoint,
$\therefore \quad\left|M^{*}\right| \leq 2 \cdot|M|$ as claimed.

The RANKING algorithm of Kerf, Vazrani, Vaztrani.

1. Sample a uniformly random total ordering of L
2. Whenever $v \in R$ arrives, if it has at least one free neighbor, match to the ore that comes earliest in this ordering.

LP relaxation of max bipartite matching,

$$
\begin{array}{ll}
\max & \sum_{(n v) \theta E} x_{u v} \\
\\
\text { str }\left(y_{u}\right) \sum_{v} x_{u v} \leqslant 1 & \forall u \in L \\
\left(y_{v}\right) \sum_{u} x_{a v} \leqslant 1 & \forall v \in R \\
x_{u v} \geqslant 0 & \forall(u v)
\end{array}
$$

Scale inequalities by seattle factors y_{u}, y_{v}, you derive

$$
\begin{aligned}
& \sum_{\varepsilon_{L}} y_{u}\left[\sum_{v} x_{w v}\right]+\sum_{v \in R} y_{v}\left[\sum_{u} x_{n v}\right] \\
& \sum_{(u v) \in E}\left(y_{u}+y_{v}\right) x_{w v}
\end{aligned}
$$

as long as $y_{u}, y_{v} \geq 0$.
This upper bounded OT as bong as

$$
y_{u}+y_{v} \geqslant 1 \quad \forall\left(u_{j}\right) \in E
$$

