30 Aug 2023 LP Relaxation + Primal-Dual Min- Cost Matching

Announcement: See Ed Dissussions for link to homework partner form, Fill it out by Fri, $9 / 1$.

If G is a bipartite graph with edge costs clavi) M a matching in F
I a vector assigning a real value to each vertex We say y is compatible with M (M-compatiole) If
(1) $y_{u}+y_{v} \leqslant c(u, v) \quad \forall(u, v) \in E$
(2) $y_{u}+y_{v}=c(u, v) \quad \forall(u, v) \in M$
(3) $y_{u}=\max _{w \in L}\left\{y_{w}\right\} \quad$ whenever $u \in \operatorname{Ln} F$
(4) $y_{v}=\max _{w \subset R}\left\{y_{w}\right\}$ whenever $v \in R \cap F$

Lemma. If M is a matching wien k edges and it has a compatible labeling, y, then M has minimum cost among all k-edge matchings.
Proof. Let $Y=\sum_{u \in V} y_{u}$.
For any matching M^{\prime}, with free vertex set F^{\prime}

$$
\operatorname{cost}\left(M^{\nu}\right)=\sum_{(u, v) \in M^{\prime}} c(u, v)
$$

$$
\geqslant \sum_{(m, j)=w^{\prime}}\left(y_{u}+y_{v}\right)=Y-\sum_{u \in F^{\prime}} y_{u}
$$

For $M^{\prime}=M$, this is equality!

RHS is a lower band on ont (M^{\prime}).
As M^{\prime} ranges over K-code matchings, the lower bound is smallest when its free vertices have Largest labels, ie. when $M^{\prime}=M$,
Furthemare whon $M^{\prime}=M$ its cost matches the lower bound.

$$
c^{y}(u, v)= \begin{cases}c(u, v)-y_{u}-y_{v} & \text { if }(u, v) \notin M \\ y_{u}+y_{v}-c(u, v) & \text { if }(u, v) \in M\end{cases}
$$

Primal -Dual Algorithm for Min-Cost Matching
Initidize $M=\varnothing, \quad y_{u}=\min _{e}\{c(e)\}$ for $u \in R$,

$$
y_{n}=0 \quad \text { for } u \in L
$$

while M has free vertices
calculate $c^{y}(u, v)$ fir each edge (uv). cakulate regrind graph G_{m}
let P be a min-reduced-cost path in G_{M} from $L \cap F$ to $R \cap F$

$$
\begin{aligned}
& y_{u} \leftarrow y_{u}+\left(c^{y}(p)-d_{u}\right)^{+} \text {for } w \in L \\
& y_{v} \leftarrow y_{v}-\left(c^{y}(p)-d_{v}\right)^{+} \text {for } v \in R \\
& z^{+}=\max \{0, z\} \text {, }
\end{aligned}
$$

endwhile output in.

Running time: $\frac{n}{2}$ iterations $x O(m+n \log n)$ per iteration

$$
=O\left(m n+n^{2} \log n\right)
$$

Correctness: According to lemma above, it boils down to showing if M, y are compatible at start of lop iter, the new M, y are compatible at the end.

Let M^{\prime}, y^{\prime} be new matching, labeling. M, y the matching \& labeling at start.

Properties $(1) \&(2)$
Case 1. er inv) $c(u, v)=y_{u} r y_{v}$

$$
\begin{aligned}
& y_{u}^{\prime}=y_{u}+\left(c^{y}(p)-d_{u}\right)^{+} \\
& y_{v}^{\prime}=y_{v}-\left(c^{y}(p)-d_{v}\right)^{+}
\end{aligned}
$$

In G_{M} these is only one edge pointing into u namely (v, u).

$$
c^{y}(x, u)=0
$$

Every pain to u goer three edge (y, u) with zero reduced cost $\Longrightarrow d_{u}=d_{v}$.

$$
\Longrightarrow \quad c(u, v)=y_{u}^{\prime}+y_{v}^{\prime} .
$$

Case 2. $e \in P \backslash M . \quad c(u y) \geq y_{u}+y_{v}$.

$$
\begin{aligned}
y_{u}^{\prime} & =y_{u}+\left(c^{y}(\rho)-d_{u}\right)^{+}=y_{u}+c^{y}(\rho)-d u \\
y_{v}^{\prime} & =y_{v}-\left(c^{y}(\rho)-d_{v}\right)^{+}=y_{v}-c^{y}(\rho)+d_{v} \\
y_{u}^{\prime}+y_{v}^{\prime} & =y_{u}+y_{v}+d_{v}-d_{u} \quad s, p \\
& =y_{u}+y_{v}+c^{y}(u, v) \\
& =c(u, v)
\end{aligned}
$$

