28 Aug 2023 Min-Cost Bipartite Perfect Matching
Announcements.
(1) Improved lecture votes on matchings to be posted tonight.
(2) Enrollment capacity to be increased sit. everyone who was on the waitlist yesterday will have a chance to erroll.

Min-Cost Bipartite Perfect Marching Problem.
Given: bipartite $G=(L, R, E) \quad|L|=|R|=\frac{n}{2}$ costs $c(u, v) \in \mathbb{R} \cup\{\infty\}$ notation: $c(u, v)=+\infty$ if $(u, j) \notin E$

Egg.

Notation. If M is a matching and S is any edge set, the "incremental cost of S relative to $M^{\prime \prime}$ is

$$
\begin{align*}
\Delta c(S ; M) & =c(M \oplus S)-c(M) \\
& =c(S \backslash M)-c(S \cap M)
\end{align*}
$$

(Quasi-) greedy $M_{i n}-63 t$ Matching
initionize $M=\varnothing$
While M is at a perfect matching let P be an Mraug't path that minimizes $\Delta c(P, M)$

$$
M \leftarrow M \oplus P
$$

endwhile
outing M

Correct?
Yes, because of the following invariant.
After k Herations of the main loop, the matching M has minimum cost among all matchings with K edges.
Proof is by induction on k. (Surprisingly subtle.) Why does r_{M} have no regative-cost cycles? If C were a cycle in G_{M} with $\Delta c(C ; M)<0$ that would mean $c(M \oplus C)-c(M)<0$

$$
\Rightarrow \quad c \frac{(M \not C C)}{r_{\text {same }}+\text { edges }}<\frac{c(M)}{T}
$$

This inez, can never hold because of our loop invariant, and hence G_{M} has no negative cost cycles.

Running time: $\frac{n}{2}$ loop iterations

$$
\begin{aligned}
& O(m n) \text { Bellman-Ford to find } P \text { in } \\
& \begin{array}{ll}
\text { each ter K }
\end{array} \\
& \begin{array}{ll}
\text { Pijkira would be }
\end{array} \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \text { if we could use it. }
\end{aligned}
$$

Our algorithm will be mavitioining (and adjusting) vertex labels, Ye for each LEV.
The reduced cost of edge $e=\left(u_{v}\right)$ will be

$$
c^{y}(u, v)= \begin{cases}c(u, v)-y_{u}-y_{v} & \text { if } e \notin M \\ y_{u}+y_{v}-c(u, v) & \text { if } e \in M\end{cases}
$$

Def. Labeling y anal matching M are compossible if:
(1) $y_{u}+y_{v} \leqslant c(u, v) \quad \forall(u, v)$
(2) $y_{u}+y_{v}=((u, v) \quad \forall(u v) \in M$
(3) $y_{u}=\max _{w \in L}\left\{y_{w}\right\} \quad \forall u \in L n F$
(4) $y_{v}=\max _{w \in R}\left\{y_{w}\right\} \quad \forall v \in R \cap F$

If M is a matching and y is a compatible labeling:
(1) We can use Dijkstra's algorithm to find an $M_{\text {-augmenting path } P \text { that mhinizes }}$ $\sum_{e \in P} c^{y}(e)$
(Min-cost path from LnF to RnF in G_{M} with respect to ede costs $c^{y}(u, v)$
which are non-negative.)
(2) Using this path preserves the cost-minimization loop invanant.

