25 Aug 2023 Finishing Hopecroft-Karp
Starting min-cost perfect matching
RECAP of last lecture...

If we de BFS of $G_{m}^{d=0}$ starting from $L \cap F$ we can label each vertex v with the length of shortest pith in G_{m} from Ln to V. Call this $d(r)$.

Edges of G_{M}. say (u, v), are either "advancing": $\quad d(r)=d(u)+1$
or

$$
\text { "retreating" : } d(v)<d(u)
$$

Def. A blocking set of augmenting piths is a (sethise) maximal collection of vertex-dispint advancing augmenting paths. (Those composed of advancing edges.)
$\frac{H-K \text { Algorithm }}{\text { intididize } \quad M}=Q$.
while G has an M-augmenting path:
let P_{1}, \ldots, P_{k} be = blocking ct of augmenting paths.

$$
M \in M \oplus\left(p_{1} \cup \ldots \cup p_{k}\right)
$$

endubile
outport M
Lemma. If the shortest M-augmerting path has length L at the start of an iteration of the $H-K$ algorithm, then ot the ind of that iteration the shortest augmenting path length is $>l$.
Proof. Let M^{\prime} be the matching of the end of that iteration and let P be a shortest M^{3}-augmenthy path.

$$
P=u_{0}, u_{1}, u_{2}, \ldots, u_{r}
$$

we know u_{0}, u_{r} are free in M^{\prime}.
\therefore they are also free in M.
(a vortex, once matched in the algorithm never becomes free)
Consider the sequence $d\left(u_{0}\right), d\left(u_{1}\right), \ldots, d\left(u_{r}\right)$.
For each pair $\left(u_{i}, u_{i+1}\right)$ either the edge $\left(u_{i} \mu_{i+1}\right) \in E\left(G_{\mu}\right)$

$$
\text { or }\left(u_{i+1}, u_{i}\right) \in E\left(G_{M}\right) \text {. }
$$

The case $\left(u_{i+1}, u_{i}\right) \in E\left(G_{M}\right)$ only happens if $\left(u_{i}, u_{i+1}\right)$ was in the blocking set of augmentiths paths. Then $d\left(u_{i+1}\right)=d\left(u_{i}\right)+1 \quad \therefore\left(u_{i}, u_{i+1}\right)$ advancing
The case $\left(u_{i}, u_{i+1}\right) \in E\left(G_{n}\right)$
Then $\quad d\left(u_{i-1}\right) \leqslant d\left(u_{i}\right)+1 . \leftarrow$ E-xality if and orly if ($\left.u_{i}, u_{i+1}\right)$ is advancing.
$d\left(u_{r}\right) \leqslant r \quad$ by inductively apdying this inequality.
$d\left(u_{r}\right) \geqslant l$ because u_{r} is free in M, and $d(v) \geqslant l$ for all ve'Rnt by assumption.

$$
\therefore \quad r \geqslant l .
$$

The wily way $r=l$ could hold is if $d\left(u_{i+1}\right)=d\left(u_{i}\right)+1$ for al $i=0,1, \cdots, r-1$.
Then at edges $\left(u_{i}, u_{i+1}\right)$ belong the $E\left(f_{m}\right)$ and are advancing.
$\Rightarrow P$ is an advancing M-augmenting path.
\Rightarrow [maximality sf blocking see] $\frac{V(P)}{T}$ intersect $\frac{V \text { (blowing set) }}{T}$. endpoints of P all of these are matched are thee in m^{\prime} in M^{\prime}
The interior of P contains a vertex in the blocking sets say u.

Path P:

The edge of M^{\prime} containing u (eve. edge u_{5}, u_{6} in our diagram) can have only one orientitation in G_{M}. But the proof requires both orientations. \leqslant

Running time analysiS
How may loop iterations occur before the shortest M-augmerting pith length exceeds \sqrt{n} ?
Ans. At most $\frac{1}{2} \sqrt{n}$.
(Shutter), path length stats at 1, increases by at least 2 in each iteration.)

How many loop iterations occur after the shortest M-augmenting park length exceeds \sqrt{n} ? If M^{*} is a maximum matching, $k:=\left|M^{*}\right|-|M|$ then $M^{*} \oplus M$ has at least K vertex-dlusint M-auy paths, and they all have $>\sqrt{n}$ vertices.
So $k \cdot \sqrt{n}<n \Rightarrow k<\sqrt{n}$.
Each iteration after that increases size of M by at least $1 \Longrightarrow$ at most \sqrt{n} iterations remain,

Total. $H-K$ alg has $<\frac{3}{2} \sqrt{n}$ outer bop iterations. Running time $O(m \sqrt{n})$.

