21 Aug 2023 Cs 6820: Andysis of Algorithms

A matching in a graph is an edge set st. each vertex belongs to at most one edge. ("exactly one".... perfect matching) maximum matching problem: given undirected $G=(V, E)$ find a matching of max cardinality.
$G:$

If G is a graph and M is a matching:

- an M-alternating path is a path in G whose edge alternate between belonging to M and not belonging.
- a free vertex (writ. M) is a vertex of G that desint belong to any edge of M.
- an M-angmenting forth is on M-alternating forth between two free vertices.

Observation. If M is a matching and P is an M-augmunting path, the symmetric difference $M \otimes P$ is a matching with ane more edge \downarrow
than M.

Lemma. If G is a graph, M_{0} ane M_{1} are matchings, and $\left|M_{1}\right|>\left|M_{0}\right|$ then $M_{0} \oplus M_{1}$ contains an M_{0}-augmenting path.
Corollary. If M_{0} is not a max matching then there exists an M_{0}-augmenting path.

Proof of lemma.
The graph with edge set $M_{0} \oplus M_{1}$
 has max degree 7 .
Se its connected components are isolated vertices, paths, and cycles.
Furthermore the paths and cycles are M-alternating. (\therefore cycles have even length)
At least one connected compost of $M_{\rho} \oplus M_{1}$ has more M_{1} edges than M_{0} edges.
It must be an M_{0}-augmenting path.
Genvic max matching aborithm.
Initialize $\quad M=\varnothing$
while G contains an M-augmenting path, P : replace M with $M \nexists P$.
enduhile
output M.

A procedure to find M-augmenting poohs when G is bipartite...
say $\quad V(G)=L \cup R$ and every edge has one endpoint in L end the other in R.

Def. The residual grope G_{M} is a directed graph with vertex set $V(G)$ and edge set

$$
E\left(\sigma_{m}\right)=\left\{\begin{array}{lll}
(u, v) & \text { if } u \in L, v \in R, \quad\{u v\} \notin M \\
(v, u) & \text { if } & u \in L, v \in R, \quad\{u, v\} \in M
\end{array}\right.
$$

Example.

G_{M}

$$
\{M \text {-augmenting piths in } G\} \longleftrightarrow\left\{\begin{array}{l}
\text { directed paths in } G_{M} \text { from } \\
\text { free } 1 \text { te in } L \text { to tee } \\
\text { ute in } R
\end{array}\right\}
$$

BFS finds in $\theta(m+n)$ time

$$
\begin{aligned}
& m=\text { \#edges } \\
& n=\text { vertices }
\end{aligned}
$$

The whole max-matching alky takes $O\left(m n+n^{2}\right)$. (At mast $\frac{n}{2}$ wite loop iterations because a matching has $\leqslant \frac{n}{2}$ edges. Each loop iteration thee $O(m m n)$ time to construct G_{m} and run brath-fist search on it.)

