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1 The Simplex Method

We will present an algorithm to solve linear programs of the form

maximize cᵀx

subject to Ax � b

x � 0

(1)

assuming that b � 0, so that x = 0 is guaranteed to be a feasible solution. Let n denote the
number of variables and let m denote the number of constraints.

A simple transformation modifies any such linear program into a form such that each
variable is constrained to be non-negative, and all other linear constraints are expressed as
equations rather than inequalities. The key is to introduce additioinal variables, called slack
variables which account for the difference between and left and right sides of each inequality
in the original linear program. In other words, linear program (1) is equivalent to

maximize cᵀx

subject to Ax+ y = b

x, y � 0

(2)

where x ∈ Rn and y ∈ Rm.

The solution set of {Ax+ y = b, x � 0, y � 0} is a polytope in the (n+m)-dimensional
vector space of ordered pairs (x, y) ∈ Rn × Rm. The simplex algorithm is an iterative
algorithm to solve linear programs of the form (2) by walking from vertex to vertex, along
the edges of this polytope, until arriving at a vertex which maximizes the objective function
cᵀx.

To illustrate the simplex method, for concreteness we will consider the following linear
program.

maximize 2x1 + 3x2

subject to x1 + x2 ≤ 8

2x1 + x2 ≤ 12

x1 + 2x2 ≤ 14

x1, x2 ≥ 0

This LP has so few variables, and so few constraints, it is easy to solve it by brute-force
enumeration of the vertices of the polytope, which in this case is a 2-dimensional polygon.
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The vertices of the polygon are [ 0
7 ], [ 2

6 ], [ 4
4 ], [ 6

0 ], [ 0
0 ]. The objective function 2x1 + 3x2 is

maximized at the vertex [ 2
6 ], where it attains the value 22. It is also easy to certify that

this is the optimal value, given that the value is attained at [ 2
6 ]: simply add together the

inequalities

x1 + x2 ≤ 8

x1 + 2x2 ≤ 14

to obtain

2x1 + 3x2 ≤ 22,

which ensures that no point in the feasible set attains an objective value greater than 22.

To solve the linear program using the simplex method, we first apply the generic trans-
formation described earlier, to rewrite it in equational form as

maximize 2x1 + 3x2

subject to x1 + x2 + y1 = 8

2x1 + x2 + y2 = 12

x1 + 2x2 + y3 = 14

x1, x2, y1, y2, y3 ≥ 0

From now on, we will be partitioning the five variables into three which are allowed to take
non-zero values (called the basic variables or basis) and two whose values will be set to zero
(called the non-basic variables or non-basis). We will use the linear equations to express
the basic variables, as well as the objective function, as affine functions of the non-basic
variables. Initially the non-basis is {x1, x2} and the linear program can be written in the
form

maximize 2x1 + 3x2

subject to y1 = 8− x1 − x2

y2 = 12− 2x1 − x2

y3 = 14− x1 − 2x2

x1, x2, y1, y2, y3 ≥ 0

which emphasizes that each of y1, y2, y3 is determined as a function of x1, x2. Now, as long
as the non-basis contains a variable which has a positive coefficient in the objective function,
we select one such variable and greedily increase its value until one of the non-negativity
constraints becomes tight. At that point, one of the other variables attains the value zero:
it leaves the basis, and the variable whose value we increased enters the basis. For example,
we could choose to increase x1 from 0 to 6, at which point y2 = 0. Then the new non-basis
becomes {y2, x2}. Rewriting the equation y2 = 12− 2x1 − x2 as

x1 = 6− 1

2
y2 −

1

2
x2, (3)
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we may substitute the right side of (3) in place of x1 everywhere in the above linear program,
arriving at the equivalent form

maximize 12− y2 + 2x2

subject to y1 = 2 + 1
2
y2 − 1

2
x2

x1 = 6− 1
2
y2 − 1

2
x2

y3 = 8 + 1
2
y2 − 3

2
x2

x1, x2, y1, y2, y3 ≥ 0

At this point, x2 still has a positive coefficient in the objective function, so we increase x2

from 0 to 4, at which point y1 = 0. Now x2 enters the basis, and the new non-basis is
{y1, y2}. We use the equation x2 = 4 + y2 − 2y1 to substitute a function of the non-basic
variables in place of x2 everywhere it appears, arriving at the new linear program

maximize 20− 4y1 + y2

subject to x2 = 4 + y2 − 2y1

x1 = 4− y2 + y1

y3 = 2− y2 + 3y1

x1, x2, y1, y2, y3 ≥ 0

Now we increase y2 from 0 to 2, at which point y3 = 0 and the new non-basis is {y1, y3}.
Substituting y2 = 2− y3 + 3y1 allows us to rewrite the linear program as

maximize 22− y1 − y3

subject to x2 = 6 + y1 − y3

x1 = 2− 2y1 + y3

y2 = 2 + 3y1 − y3

x1, x2, y1, y2, y3 ≥ 0

(4)

At this point, there is no variable with a positive coefficient in the objective function, and
we stop.

It is trivial to verify that the solution defined by the current iteration—namely, x1 =
2, x2 = 6, y1 = 0, y2 = 2, y3 = 0—is optimal. The reason is that we have managed to
write the objective function in the form 22 − y1 − y3. Since the coefficient on each of the
variables y1, y3 is negative, and y1 and y3 are constrained to take non-negative values, the
largest possible value of the objective function is achieved by setting both y1 and y3 to zero,
as our solution does.

More generally, if the simplex method terminates, it means that we have found an equiv-
alent representation of the original linear program (2) in a form where the objective function
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attaches a non-positive coefficient to each of the non-basic variables. Since the non-basic
variables are required to be non-negative, the objective function is maximized by setting
all the non-basic variables to zero, which certifies that the solution at the end of the final
iteration is optimal.

There is another way that the simplex method can terminate, which is not illustrated
by the example above. It may happen, in one iteration, that we choose a variable with a
positive coefficient in the objective function, and we find that we can increase this variable
to an arbitrarily large value without violating any of the non-negativity constraints. (This
situation happens when the increasing variable appears with a non-negative coefficient in
each of the equations that defines the basic variables as an affine function of the non-basic
variables.) In that case, we have verified that the optimum of the linear program is equal to
+∞, i.e. the objective function cᵀx takes unboundedly large values as x ranges over the set
of vectors satisfying the constraints.

Note that, in our running example, the final objective function assigned coefficient −1 to
both y1 and y3. This is closely related to the fact that the simple “certificate of optimality”
described above (before we started running the simplex algorithm) we obtained by summing
the first and third inequalities of the original linear program, each with a coefficient of 1.
We will see in the following section that this is not a coincidence.

Before leaving this discussion of the simplex method, we must touch upon a subtle issue
regarding the question of whether the algorithm always terminates. A basis is an m-element
subset of n + m variables, so there are at most

(
n+m
m

)
bases; if we can ensure that the

algorithm never returns to the same basis as in a previous iteration, then it must terminate.
Note that each basis determines a unique point (x, y) ∈ Rn+m—defined by setting the non-
basic variables to zero and assigning to the remaining variables the unique values that satisfy
the equation Ax + y = b—and as the algorithm proceeds from basis to basis, the objective
function value at the corresponding points never decreases. If the objective function strictly
increases when moving from basis B to basis B′, then the algorithm is guaranteed never to
return to basis B, since the objective function value is now strictly greater than its value at
B, and it will never decrease. On the other hand, it is possible for the simplex algorithm to
shift from one basis to a different basis with the same objective function value; this is called
a degenerate pivot, and it can only happen when there is a basic variable whose value is 0 at
the current solution.

There exist pivot rules (i.e., rules for selecting the next basis in the simplex algorithm)
that are designed to avoid infinite loops of degenerate pivots. Perhaps the simplest such
rule is Bland’s rule, which always chooses the entering variable to be the lowest-numbered
non-basic variable that has a positive coefficient in the objective function. Similarly, in case
the leaving variable is not uniquely determined, Bland’s rule chooses the lowest-numbered
possibility. Although the rule is simple to define, proving that it avoids infinite loops is not
easy, and we will omit the proof from these notes. Instead, the following section is devoted
to presenting a pivot rule that is much more algorithmically costly, but leads to an easier
and more conceptual proof of termination.
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1.1 A non-cycling pivot rule based on infinitesimals

In order for a degenerate pivot to be possible when solving a given linear program using the
simplex method, the equation Ax+ y = b must have a solution in which n+ 1 or more of the
variables take the value 0. Generically, a system of m linear equations in m + n unknown
does not have solutions with strictly more than n of the variables equal to 0. If we modify the
linear system Ax+y = b by perturbing it slightly, we should expect that such a modification
will, generically, eliminate the possibility of encountering degenerate pivots when running
the simplex algorithm.

These algebraic considerations can also be visualized in geometric terms. The linear
system Ax + y = b consists of m linearly independent equations in m + n unknown, so
its solution set is an n-dimensional subspace of the m + n-dimensional vector space of all
(x, y) pairs. In this n-dimensional space, the inequalities x � 0, y � 0 define m + n half-
spaces, each bounded by a hyperplane of the form {xj = 0} or {yi = 0}. In n-dimensional
space, n hyperplanes in general position will intersect at a single point, whereas n + 1 or
more hyperplanes in general position will have an empty intersection. For example, in three
dimensions, any three planes in general position have one intersection point, whereas four
planes in general position have an empty intersection. However, it is perfectly possible for
four planes (not in general position) to have a non-empty intersection, as when the four faces
of a square pyramid meet at its apex. If one were to run the simplex algorithm to optimize
a linear function on a three-dimensional polyhedron such as a square pyramid, it is possible
that one or more iterations of the algorithm would start at the apex of the pyramid, with a
non-basis consisting of any three of the four slack variables corresponding to the four sides of
the pyramid. A degenerate pivot would substitute a new non-basis by replacing one of these
three slack variables with the slack variable that was omitted from the previous non-basis.
After performing this operation, and setting the variables in the new non-basis equal to zero,
we remain situated at the same vertex as before, namely the apex of the pyramid.

Now consider modifying the polyhedron by perturbing the height of each face of the
pyramid by a very small amount — potentially a different small quantity for each of the
faces. This operation modifies the shape of the top of the polyhedron slightly; the apex point
is replaced with a very short line segment joining two vertices, as illustrated in Figure 1.

Figure 1: A pyramid and its generic perturbation

The modified polyhedron has no degenerate vertices; every vertex is situated at the
intersection of three (and only three) faces. The degenerate pivot at the apex of the pyramid
has been replaced by a non-degenerate pivot that makes progress by moving along the short
line segment joining the two topmost vertices of the modified polyhedron.

The foregoing discussion about perturbations could potentially by implemented by adding
a short random vector ε to the vector b occurring on the right side of the equation Ax+y = b,
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resulting in the new equation Ax + y = b + ε. To justify that this works, one first needs
to reason about the probability that the modified polyhedron has no degenerate vertices.
This probability turns out to be equal to 1, assuming that the distribution of the vector ε is
absolutely continuous with respect to Lebesgue measure, but that fact requires proof. Next
one would need to reason about whether every vertex of the new polyhedron is situated near
a vertex of the original polyhedron (i.e., at a distance tending to zero as the length of the
vector ε tends to zero). This also turns out to be true, but again requires proof.

Instead of using probability, we will adopt a more algebraic formalism that gracefully
sidesteps some of these issues. The idea will be to treat the coefficients of the linear program
as belonging to an extension field of the real numbers that is still totally ordered, but contains
infinitesimal numbers representing the perturbations.

Definition 1. An ordered field is a field F with a distinguished subset F>0, called the set of
positive elements, that is closed under addition and multiplication, does not contain 0, and
satisfies the property that for every non-zero x ∈ F, exactly one of x and −x is positive. One
can define a total ordering on F by specifying that x < x′ if and only if x′ − x is positive.
Inequalities defined in this way obey the usual algebraic rules for manipulating inequalities,
for example the rule which asserts that the validity of an inequality is preserved under scaling
both sides by the same positive scalar.

Definition 2. If F is an ordered field that contains R as a subfield, an element x ∈ F is
called finite if there is some r ∈ R such that −r < x < r, and otherwise we refer to x as
infinite. If x 6= 0 and x−1 is infinite we say that x is infinitesimal. The finite elements
constitute a subring F<∞ and the infinitesimals are an ideal in this subring. There is a
surjective homomorphism F<∞ → R whose kernel is the ideal of infinitesimal elements. This
homomorphism is defined by mapping each finite x ∈ F to the real number

[x]
∆
= inf{r ∈ R | r > x}. (5)

Lemma 1. There exists an ordered field F that contains R as a subfield, and whose ideal of
infinitesimal elements is an infinite-dimensional vector space over R.

Proof. Let ε be a formal variable (i.e., a symbol with no numerical meaning) and let F be
the field of rational functions R(ε). In other words, an element of F is an equivalence class
of fractions P/Q where P and Q are both polynomials in the formal variable ε, with real
coefficients, and Q 6= 0. The equivalence relation is defined by specifying that P1/Q1 =
P2/Q2 if and only if P1Q2 = P2Q1. For example, 3−3ε2

1−ε3 and 3+ε
1+ε+ε2

are two expressions
representing the same element of R(ε).

The ordering of F is defined as follows. A non-zero polynomial P = a0 + a1ε+ · · ·+ anε
n

is positive if and only if the first non-zero element of the coefficient sequence a0, a1, . . . , an is
positive. A quotient P/Q is positive if and only if P and Q are either both positive or both
negative.

Under this ordering, the monomials ε, ε2, ε3, . . . constitute an infinite set of infinitesimal
elements that are linearly independent over R.
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We defined linear programs and the simplex algorithm using the field of real numbers,
but the problem definition and the algorithm both make sense over any ordered field. In
particular, we can let K be an ordered extension field of R that contains m linearly inde-
pendent infinitesimal elements ε1, ε2, . . . , εm, and we can modify the linear program (2) by
replacing the equation Ax + y = b with Ax + y = b + ε, where ε denotes the column vector
(ε1, ε2, . . . , εm)ᵀ.

Claim 2. Fix a matrix A and vector b over the real numbers, and fix an ordered extension
field F ⊃ R that contains m linearly independent infinitesimal elements ε1, ε2, . . . , εm. Let
ε = (ε1, ε2, . . . , εm)ᵀ. For any x ∈ Fn and y ∈ Fm satisfying Ax+ y = b+ ε, at most n of the
elements x1, . . . , xn, y1, . . . , ym are equal to 0.

Proof. For i = 1, . . . ,m the equation

εi =
n∑
j=1

aijxj + yi − bi

shows that εi belongs to the R-linear subspace of K generated by {1, x1, . . . , xn, y1, . . . , ym}.
Of course, the element 1 ∈ F also belongs to this subspace, which we will denote by L. Since
1, ε1, . . . , εm are linearly independent over R, the dimension of L over R is at least m+ 1. In
particular, since the set {1, x1, . . . , xn, y1, . . . , ym} contains a basis for L, it must contain at
least m+ 1 non-zero elements, and hence at most n elements are equal to 0.

Claim 3. Fix A, b,F, ε as in Claim 2. When one solves the linear program

maximize cᵀx

subject to Ax+ y = b+ ε

x, y � 0

(6)

using the simplex method, there are no degnerate pivots and the algorithm terminates after
performing at most

(
m+n
n

)
pivots.

Proof. A degenerate pivot, by definition, occurs when n + 1 or more coordinates of the
vectors x, y are non-zero. Claim 2 shows that this can never happen when (x, y) belongs
to the solution set of Ax + y = b + ε. Hence, there are no degenerate pivots. This means
that the value of the objective function cᵀx (interpreted as an element of the ordered field
F) strictly increases with each iteration of the algorithm. Consequently, no two iterations of
the algorithm can use the same basis, and the number of iterations is bounded above by the
number of bases, which is

(
m+n
n

)
.

A pivot rule that guarantees termination. To define a non-cycling pivot rule for the
simplex method solving an ordinary linear program (i.e., with coefficients in R) our strategy
will be to run the simplex method in tandem on two linear programs: one defined over R
with constraint set {Ax + y = b, x, y � 0}, and another defined over the extension field F
with constraint set {Ax + y = b + ε, x, y � 0}. Let us distinguish the two linear programs
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by calling the first one LPR and the second one LPF. We run the simplex method to solve
LPF, and we let x(t), y(t) denote the values of the vectors x, y at the start of iteration t,
for t = 0, 1, . . . , T , where T either denotes the final iteration of the algorithm, or the last
iteration in which all components of the vector x(T ) are finite.

Recall the homomorphism x 7→ [x] from F<∞ to R defined in equation (5). We will
abuse notation and apply this homomorphism to vector spaces as well: if x is a vector with
components in F<∞ we let [x] denote the vector over R obtained by applying the operation
xi 7→ [xi] to each component of x. Now take the sequence of vector pairs {x(t), y(t)}Tt=0 rep-
resenting the execution of the simplex method solving LPF and translate it to the sequence
of vector pairs {[x(t)], [y(t)]}Tt=0. This sequence represents an initial segment of a valid exe-
cution of the simplex method solving LPR. In every iteration, n of the variables in the set
{[x(t)

j ] | j = 1, . . . , n} ∪ {[y(t)
i ] | i = 1, . . . ,m} are equal to zero, because the n variables in

the non-basis of the corresponding iteration of the LPF are equal to 0, and [0] = 0. The
remaining m variables in the set are non-negative, because their counterparts in the LPF
execution are non-negative, and the homomorphism x 7→ [x] preserves non-negativity.

To conclude our analysis we will show that {[x(t)], [y(t)]}Tt=0 represents a terminating
execution of the simplex method solving LPR. By the definition of T , we know that in
iteration T the simplex method solving LPF either terminates (because when the objective
function is written in terms of the current non-basis, every coefficient is non-positive) or it
chooses a variable in the non-basis and increases its value from 0 to an infinite element of F.
In the former case the simplex method solving LPR also terminates at iteration T because
its objective function coefficients are non-positive. (The homomorphism x 7→ [x] preserves
non-positivity.) In the latter case, the simplex method solving LPR terminates in iteration
T because it discovers that the optimum is equal to +∞.

1.2 The simplex method takes exponential time in the worst case

An example due to Klee and Minty illustrates that the simplex method can take exponential
time in the worst case. Consider the linear program

maximize xn

subject to 0 ≤ x1 ≤ 1

δxi ≤ xi+1 ≤ 1− δxi for 1 ≤ i < n

(7)

Here, δ is a positive number less than 1/2.

The polyhedron defined by the constraints of this linear program is shaped like an n-
dimensional hypercube with tilted sides, as depicted in Figure 2. It is called a Klee-Minty
cube. There is an execution of the simplex method that visits each of the 2n vertices of
the Klee-Minty cube, starting from (0, 0, . . . , 0) and ending at (0, 0, . . . , 1). The sequence
of vertices can be defined recursively as follows. The “back face” of the Klee-Minty cube,
where the equation xn = δxn−1 is satisfied, is a copy of the (n− 1)-dimensional Klee-Minty
cube. We run an execution of the simplex method on this (n − 1)-dimensional Klee-Minty
cube, with the modified objective function xn−1. The equation xn = δxn−1 guarantees that
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Figure 2: A Klee-Minty cube in three dimensions

the true objective function increases as the modified objective function increases, which
means that this remains a valid execution of the simplex method on the back face of the
n-dimensional Klee-Minty cube. After reaching the vertex (0, 0, . . . , 1, δ), we move from the
back face to the front face, where the equation xn = 1 − δxn−1 is satisfied, arriving at the
vertex (0, 0, . . . , 1, 1 − δ). Then we run through the vertices of the front face by reversing
the order in which we visited the corresponding vertices on the back face. As we do this,
xn−1 strictly decreases with each pivot; due to the equation xn = 1− δxn−1 this means that
xn strictly increases with each pivot, confirming that this is a valid execution of the simplex
algorithm.

2 The Simplex Method and Strong Duality

An important consequence of the correctness and termination of the simplex algorithm is
linear programming duality, which asserts that for every linear program with a maximization
objective, there is a related linear program with a minimization objective whose optimum
matches the optimum of the first LP.

Theorem 4. Consider any pair of linear programs of the form

maximize cᵀx

subject to Ax � b

x � 0

and

minimize bᵀη

subject to Aᵀη � c

η � 0

(8)

If the optimum of the first linear program is finite, then both linear programs have the same
optimum value.

Proof. Before delving into the formal proof, the following intuition is useful. If ai denotes the
ith row of the matrix A, then the relation Ax � b can equivalently be expressed by stating
that aᵀi x ≤ bi for j = 1, . . . ,m. For any m-tuple of non-negative coefficients η1, . . . , ηm, we
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can form a weighted sum of these inequalities,

m∑
j=1

ηia
ᵀ
i x ≤

m∑
j=1

ηibi, (9)

obtaining an inequality implied by Ax � b. Depending on the choice of weights η1, . . . , ηm,
the inequality (9) may or may not imply an upper bound on the quantity cᵀx, for all x � 0.
The case in which (9) implies an upper bound on cᵀx is when, for each variable xj (j =
1, . . . , n), the coefficient of xj on the left side of (9) is greater than or equal to the coefficient
of xj in the expression cᵀx. In other words, the case in which (9) implies an upper bound on
cᵀx for all x � 0 is when

∀j ∈ {1, . . . , n}
m∑
i=1

ηiaij ≥ cj. (10)

We can express (9) and (10) more succinctly by packaging the coefficients of the weighted
sum into a vector, η. Then, inequality (9) can be rewritten as

ηᵀAx ≤ ηᵀb, (11)

and the criterion expressed by (10) can be rewritten as

ηᵀA � cᵀ. (12)

The reasoning surrounding inequalities (9) and (10) can now be summarized by saying that
for any vector η ∈ Rm satisfying η � 0 and ηᵀA � cᵀ, we have

cᵀx ≤ ηᵀAx ≤ ηᵀb (13)

for all x � 0 satisfying Ax � b. (In hindsight, proving inequality (13) is trivial using the
properties of the vector ordering � and our assumptions about x and η.)

Applying (13), we may immediately conclude that the minimum of ηᵀb over all η � 0
satisfying ηᵀA � cᵀ, is greater than or equal to the maximum of cᵀx over all x � 0 satisfying
Ax � b. That is, the optimum of the first LP in (8) is less than or equal to the optimum of
the second LP in (8), a relation known as weak duality.

To prove that the optima of the two linear programs are equal, as asserted by the theo-
rem, we need to furnish vectors x, η satisfying the constraints of the first and second linear
programs in (8), respectively, such that cᵀx = bᵀη. To do so, we will make use of the sim-
plex algorithm and its termination condition. At the moment of termination, the objective
function has been rewritten in a form that has no positive coefficient on any variable. In
other words, the objective function is written in the form v − ξᵀx− ηᵀy for some coefficient
vectors ξ ∈ Rn and η ∈ Rm such that ξ, η � 0.

An invariant of the simplex algorithm is that whenever it rewrites the objective function,
it preserves the property that the objective function value matches cᵀx for all pairs (x, y) ∈
Rn × Rm such that Ax+ y = b. In other words, we have

∀x ∈ Rn v − ξᵀx− ηᵀ(b− Ax) = cᵀx. (14)

10



Equating the constant terms on the left and right sides, we find that v = ηᵀb. Equating the
cofficient of xj on the left and right sides for all j, we find that ηᵀA = ξᵀ + cᵀ � cᵀ. Thus,
the vector η satisfies the constraints of the second LP in (8).

Now consider the vector (x, y) which the simplex algorithm outputs at termination. All
the variables having a non-zero coefficient in the expression −ξᵀx− ηᵀy belong to the algo-
rithm’s non-basis, and hence are set to zero in the solution (x, y). This means that

v = v − ξᵀx− ηᵀy = cᵀx

and hence, using the relation v = ηᵀb derived earlier, we have cᵀx = bᵀη as desired.
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