
Cornell University, Fall 2023 CS 6820: Algorithms
Lecture notes: The multiplicative weights update method November 2021

The multiplicative weights update method is a family of algorithms that have found many
different applications in CS: algorithms for learning and prediction problems, fast algorithms
for approximately solving certain linear programs, and hardness amplification in complexity
theory, to name a few examples. It is a general and surprisingly powerful iterative method
based on maintaining a vector of state variables and applying small multiplicative updates to
the components of the vector to converge toward an optimal solution of some problem. These
notes introduce the basic method and explore two applications: online prediction problems and
packing/covering linear programs.

1 Investing and combining expert advice

In this section we analyze two inter-related problems. The first problem is an investment problem
in which there are n stocks numbered 1, . . . , n, and an investor with an initial wealth W (0) = 1
must choose in each period how to split the current wealth among the securities. The price
of each stock then increases by some factor between 1 and 1 + ε (a different factor for each
stock, not known to the investor at the time of making her investment) and the wealth increases
accordingly. The goal is to do nearly as well as buying and holding the single best-performing
stock.

Let’s introduce some notation for the investment problem. At time t = 1, . . . , T , the investor
chooses to partition her wealth into shares x1(t), . . . , xn(t). These shares must be non-negative
(short-selling stocks is disallowed) and they must sum to 1 (the investor’s money must be fully
invested).

n∑
i=1

xi(t) = 1 ∀t

xi(t) ≥ 0 ∀t ∀i

We summarize these constraints by saying that the vector x(t) = (x1(t), . . . , xn(t)) belongs to the
probability simplex ∆(n). As stated earlier, the amount by which the price of stock i appreciates
at time t is a number between 1 and 1 + ε. Denote this number by (1 + ε)ri(t).

If we let W (t) denote the investor’s wealth at the end of round t, then the wealth at the start
of round t is W (t− 1) and the amount invested in stock i is xi(t)W (t− 1). We thus have

W (t) =
n∑
i=1

(1 + ε)ri(t)xi(t)W (t− 1).

The prediction problem that we will study bears some superficial similarities to the investment
problem. (And, as we will see, the similarity extends much deeper.) In this problem there is
a gambler and n “experts”. At time t = 1, . . . , n, the gambler bets $1 by dividing it among
the experts. Once again, we will use x(t) ∈ ∆(n) to denote the vector representing how the
gambler splits her bet at time t. Each expert generates a payoff at time t denoted by ri(t), and
the gambler’s payoff is the dot product x(t) · r(t). In other words, placing a bet of xi(t) on
expert i yields a payoff of xi(t)ri(t) in round t, and the gambler’s total payoff is the sum of these

payoffs. The goal is to gain nearly as much payoff as the strategy that always bets on the single
best-performing expert.

There are some clear relationships between the two problems, but also some clear differences,
chiefly that payoffs accumulate multiplicatively in one problem, and additively in the other.
Consequently, the relationship between the problems becomes clearer when we take the logarithm
of the investor’s wealth. For example, if the investor follows the strategy of buying and holding
stock i, her wealth after time t would satisfy

W (t) =
t∏
i=1

(1 + ε)ri(t)

log1+εW (t) =
t∑
i=1

ri(t) = ri(1 : t)

where the last equation should be interpreted as the definition of the notation ri(1 : t). Similarly,
if the investor follows the “uniform buy-and-hold strategy” of initially investing 1/n in each stock,
and never performing any trades after that, then her investment in stock i after time t is given
by 1

n
(1 + ε)ri(1:t), and her log-wealth after time t satisfies

log1+εW (t) = log1+ε

(
1

n

n∑
i=1

(1 + ε)ri(1:t)

)
.

Letting i denote an arbitrary stock (e.g. the best-performing one), the wealth of the uniform
buy-and-hold strategy satisfies

log1+εW (t) > log1+ε

(
1

n
(1 + ε)ri(1:t)

)
= ri(1 : t)− log1+ε(n).

This already gives a useful bound on the additive difference in log-wealth between the uniform
buy-and-hold strategy and the strategy that buys and holds the single best-performing stock.

An important relationship between the investment and prediction problems is expressed by
the following calculation, which applies to an investor who distributes her wealth at time t using
vector x(t). The log-wealth after time t then satisfies the following.

log1+εW (t) = log1+ε

(
n∑
i=1

(1 + ε)ri(t)xi(t)W (t− 1)

)

= log1+εW (t− 1) + log1+ε

(
n∑
i=1

(1 + ε)ri(t)xi(t)

)

≤ log1+εW (t− 1) + log1+ε

(
n∑
i=1

(1 + εri(t))xi(t)

)

= log1+εW (t− 1) +
ln (1 + ε

∑n
i=1 ri(t)xi(t))

ln(1 + ε)

≤ log1+εW (t− 1) +
ε

ln(1 + ε)
x(t) · r(t).

Summing over t = 1, . . . , T , we find that

log1+εW (T) ≤ ε

ln(1 + ε)

T∑
t=1

x(t) · r(t),

which implies a relation between the log-wealth of an investor using strategy x(1), . . . ,x(T) and
the payoff of a gambler using the same strategy sequence in the prediction problem.

Recall that the uniform buy-and-hold strategy was actually a pretty good strategy for the
investor. This implies that the corresponding prediction strategy is pretty good for the gambler.
In the gambling context (also known as the predicting from expert advice context) the strategy
that corresponds to uniform-buy-and-hold is known as the multiplicative weights algorithm
or Hedge. At time t it predicts the vector x(t) whose ith component is given by

xi(t) =
(1 + ε)ri(1:t)∑n
j=1(1 + ε)rj(1:t)

.

We have seen that the payoff of the multiplicative weights algorithm satisfies

T∑
t=1

x(t) · r(t) ≥ ln(1 + ε)

ε
log1+εW (T)

≥ ln(1 + ε)

ε
ri(1 : t)− ln(1 + ε)

ε
log1+ε n

> (1− ε)ri(1 : t)− lnn

ε
.

The last line used the identity 1
x

ln(1 + x) > 1 − x which is valid for any x > 0. (See the proof
in Appendix A.)

The role of the parameter ε > 0 in the two problems deserves some discussion. In the
investment problem, ε is a parameter of the model, and one can either treat it as an assumption
about the way stock prices change in discrete time — never by a factor of more than 1 + ε from
one time period the next — or one can instead imagine that stock prices change continuously
over time, and the parameter ε is determined by how rapidly the investor chooses to engage in
trading. In the prediction problem, on the other hand, the model does not define ε and it is
instead under the discretion of the algorithm designer. There is a tradeoff between choosing a
small or a large value of ε, and the performance guarantee

T∑
t=1

x(t) · r(t) > (1− ε)ri(1 : t)− lnn

ε

neatly summarizes the tradeoff. A smaller value of ε allows the gambler to achieve a better
multiplicative approximation to the best expert, at the cost of a larger additive error term. In
short, ε can be interpreted as a “learning rate” parameter: with a small ε (slow learning rate)
the gambler pays a huge start-up cost in order to eventually achieve a very close multiplicative
approximation to the optimum; with a large ε the eventual approximation is more crude, but
the start-up cost is much cheaper.

2 Solving linear programs with multiplicative weights

This section presents an application of the multiplicative-weights method to solving packing and
covering linear programs. When A is a non-negative matrix and p, b are non-negative vectors, the
following pair of linear programs are called a packing and a covering linear program, respectively.

max pᵀy

s.t. Ay � b

y � 0

min bᵀx

s.t. Aᵀx � p

x � 0

Note that the covering problem is the dual of the packing problem and vice-versa. To develop
intuitions about these linear programs it is useful to adopt the following metaphor. Think of
the entries aij of matrix A as denoting the amount of raw material i needed to product one unit
of product j. Think of bi as the total supply of resource i available to a firm, and pj as the
unit price at which the firm can sell product j. If the vector y in the first LP is interpreted as
the quantity of each product to be produced, then the vector Ay encodes the amount of each
resource required to produce y, the constraint Ay � b says that the firm’s production is limited
by its resource budget, and the optimization criterion (maximize pᵀy) specifies that the firm’s
goal is to maximize revenue.

The dual LP also admits an interpretation within this metaphor. If we think of the vector
x as designating a unit price for each raw material, then the constraint Aᵀx � p expresses the
property that for each product j, the cost of resources required to produce one unit of j exceeds
the price at which it can be sold. Therefore, if a vector x is feasible for the dual LP, then the
cost of obtaining the resource bundle b at prices x (namely, bᵀx) exceeds the revenue gained
from selling any product bundle y that can be made from the resources in b (namely, pᵀy). This
reflects weak duality, the assertion that the maximum of pᵀy over primal-feasible vectors y is less
than or equal to the minimum of bᵀx over dual-feasible vectors x. Strong duality asserts that
they are in fact equal; the algorithm we will develop supplies an algorithmic proof of this fact.

The multiplicative weights method for solving packing and covering linear programs was
pioneered by Plotkin, Shmoys, and Tardos and independently by Grigoriadis and Khachiyan.
The version we present here differs a bit from the Plotkin-Shmoys-Tardos exposition of the
algorithm, in order to leverage the connection to the multiplicative weights method for online
prediction, as well as to incorporate a “width reduction” technique introduced by Garg and
Könemann. We will make the simplifying assuymption that b = B · 1, for some scalar B > 0.
We can always manipulate the linear program so that it satisfies this assumption, by simply
changing the units in which resource consumption is measured. Also, after rescaling the units
of resource consumption (by a common factor) we can assume that 0 ≤ aij ≤ 1 for all i, j —
possibly at the expense of changing the value of B.

The algorithm is as follows.

Algorithm 1 Multiplicative weights algorithm for packing/covering LP’s

1: Given: parameters ε, δ > 0.
2: Initialize: t← 0, Y ← 0. // Y is a vector storing δ(y1 + · · ·+ yt).
3: while AY ≺ B1 do
4: t← t+ 1.
5: ∀i = 1, . . . , n (xt)i ← (1+ε)(AY)i/δ∑n

j=1(1+ε)(AY)j/δ
.

6: yt ← arg miny∈∆(n)

{
xᵀtAy

pᵀy

}
.

7: Y ← Y + δ yt.
8: end while

The vector xt is being set using the multiplicative weights algorithm with payoff sequence

rt = Ayt. In the expression defining yt, the ratio
xᵀtAy

pᵀy
can be interpreted as the cost-benefit ratio

of producing a product randomly sampled from the probability distribution y. The arg min of
this ratio will therefore be a point-mass distribution concentrated on the single product with the
smallest cost-benefit ratio, i.e. one can always choose the vector yt to have only one non-zero
entry.

To analyze the algorithm, we begin with the performance guarantee of the multiplicative
weights prediction algorithm. Let T be the time when the algorithm terminates.

T∑
t=1

xᵀtAyt ≥ (1− ε) max
i

{
T∑
t=1

(Ayt)i

}
− lnn

ε
≥ (1− ε) · B

δ
− lnn

ε
. (1)

(The second inequality is justified by the stopping condition for the algorithm.)
Next we work on deriving an upper bound on the quantity on the left side of (1). The

definition of yt implies that for any other vector y,

xᵀtAy

pᵀy
≥ xᵀtAyt

pᵀyt
. (2)

Setting y in this inequality equal to y∗, the optimum solution of the primal linear program, we
find that

(xᵀtAy∗)(p
ᵀyt)

pᵀy∗
≥ xᵀtAyt. (3)

Let x̄ denote the weighted average of the vectors x1, . . . , xT , averaged with weights pᵀyt
pᵀY

:

x̄ =
δ

pᵀY

T∑
t=1

(pᵀyt)xt. (4)

Summing (3) over t = 1, . . . , T and using the definition of x̄, we obtain

1

δ
· p

ᵀY

pᵀy∗
· x̄ᵀAy∗ ≥

T∑
t=1

xᵀtAyt. (5)

Each of the vectors x1, . . . , xT satisfies xᵀt1 = 1, so their weighted average x̄ satisfies x̄ᵀ1 = 1 as
well. Using the inequality Ay∗ � B1, which follows from primal feasibility of y∗, we now deduce
that

B = x̄ᵀ(B1) ≥ x̄ᵀAy∗. (6)

Combining (1), (5), (6) we obtain

pᵀY

pᵀy∗
· B
δ
≥ (1− ε) · B

δ
− lnn

ε
(7)

pᵀY

pᵀy∗
≥ 1− ε− δ lnn

εB
. (8)

Thus, if we want to ensure that the algorithm computes a vector Y which is at least a (1− 2ε)-
approximation to the optimum of the linear program, it suffices to set δ = ε2B

lnn
.

To bound the number of iterations of the algorithm’s while loop, let γ be a parameter such
that every column of A has an entry bounded below by γ. Then, in every iteration some entry
of the vector AY increases by at least γδ. Since the algorithm stops as soon as some entry of
AY exceeds B, the number of iterations is bounded above by nB/(γδ). Substituting δ = ε2B

lnn
,

this means that the number of iterations is bounded by (n log n)/(ε2γ).

3 Multicommodity Flow

Now it’s time to see how these ideas are applied in the context of a concrete optimization problem,
multicommodity flow, which is a generalization of network flow featuring multiple source-sink
pairs.

3.1 Problem definition

A multicommodity flow problem is specified by a graph (directed or undirected) G, a collection
of k source-sink pairs {(si, ti)}ki=1, and a non-negative capacity c(e) for every edge e = (u, v). A
multicommodity flow is a k-tuple of flows (f1, . . . , fk) such that fi is a flow from si to ti, and the
superposition of all k flows satisfies the edge capacity constraints in the sense that for every edge
e = (u, v) we have

[Undirected case] c(e) ≥
k∑
i=1

|fi(u, v)|

[Directed case] c(e) ≥
k∑
i=1

max{0, fi(u, v)}

There are two different objectives that are commonly studied in multicommodity flow theory.

Maximum throughput: Maximize
∑k

i=1 |fi|.

Maximum concurrent flow: Maximize min1≤i≤k |fi|.

3.2 The case of uniform edge capacities

It is fairly straightforward to apply the multiplicative-weights algorithm to solve multicommodity
flow problems in graphs where all edges have identical capacity. (We will consider the general
case, in which edges don’t necessarily have identical capacity, in the next section of these notes.)
Letting B denote the capacity of each edge, the multicommodity flow problem can be expressed
by the following linear program with exponentially many variables yP , where P ranges over all
paths that join some source-sink pair (si, ti).

max
∑

P yP
s.t.

∑
P :e∈P yP ≤ c(e) ∀e

yP ≥ 0 ∀P
(9)

This problem is a packing linear program. The objective function of the packing problem has
coefficient vector p = 1, and the constraint matrix A has entries aij = 1 if edge ei belongs to
path Pj. Note that every column of A contains at least one entry equal to 1, so this problem has
γ = 1. Thus, the multiplicative weights algorithm finds a (1− 2ε)-approximation of the optimal
solution in at most m log n/ε2 iterations, where m denotes the number of edges. (In previous
sections we referred to the number of constraints in the packing LP as n rather than m, but it
would be too confusing to use the letter n to denote the number of edges in a graph, which is
always denoted by m. Accordingly, we have switched to using m in this section.)

In any iteration of the algorithm, we must solve the minimization problem arg min{(xᵀtAy)/(1ᵀy) |
y ∈ ∆(paths)}, where ∆(paths) denotes the set of all probability distributions over paths that

join some (si, ti) pair. Recalling that the minimum is always achieved at a distribution y that
assigns probability 1 to one path and 0 to all others, and that the vector Ay in this case is a
{0, 1}-vector that identifies the edges of the path, we see that the expression xᵀtAy can be inter-
preted as the combined cost of the edges in path y, when edge costs are given by the entries of the
vector xt. The expression 1ᵀy is simply equal to 1, so it can be ignored. Thus, the minimization
problem that we must solve in one iteration of the algorithm is to find a minimum-cost path
with respect to the edge costs given by xt. This is easily done by running Dijkstra’s algorithm
to find the minimum cost (si, ti) path for each i = 1, . . . , k.

In summary, we have derived the following algorithm for approximately solving the maximum-
throughput multicommodity flow problem in graphs whose edges all have identical capacity B.
The algorithm reduces computing a (1 − 2ε)-approximate maximum multicommodity flow to
solving km lnm/ε2 shortest-path problems. In the pseudocode, the variable ze for an edge e = ei
keeps track of the amount of flow we have sent on edge e, and xe = (1 + ε)ze/δ is a variable whose
value in loop iteration t is proportional to (but not equal to) the ith entry of the vector xt in
the above discussion. The algorithm’s validity is unaffected by the fact that the vector (xe)e∈E
is a scalar multiple of the vector xt in the above discussion, because the outcome of the min-cost
path computation with respect to edge cost vector x is unaffected by rescaling the costs.

Algorithm 2 Max-throughput multicommodity flow algorithm, uniform-capacity case.

1: Given: Parameter ε > 0.
2: Initialize: δ = ε2B/(lnm), x = 1, f1 = · · · = fk = 0, z = 0.
3: while z ≺ B1 do
4: for i = 1, . . . , k do
5: Pi ← minimum cost path from si to ti, with respect to edge costs xe.
6: end for
7: i← arg min1≤j≤k{cost(Pj)}.
8: Update flow fi by sending δ units of flow on Pj.
9: for all e ∈ Pj do
10: xe ← (1 + ε)xe.
11: ze ← ze + δ.
12: end for
13: end while

Note that in this example, the fact that the packing linear program has exponentially many
variables did not prevent us from designing an efficient algorithm to solve it. That is because,
although the matrix A and vector Y in the multiplicative-weights algorithm have exponentially
many entries, the algorithm never explicitly stores and manipulates them. This theme is quite
common in applications of the multiplicative-weights method: the space requirement of the
algorithm scales linearly with the number of constraints in the primal LP, but we can handle
exponentially many variables in polynomial space and time, provided that we have a subroutine
that efficiently solves the minimization problem arg min{(xᵀtAy)/(pᵀy)}.

3.3 General edge capacities

When edges have differing capacities, a small modification to the foregoing algorithm permits us
to use it for computing an approximate maximum-throughput multicommodity flow.

The issue is that the multiplicative-weights algorithm we have presented in these notes re-
quires a packing LP in which all of the constraints have the same number, B, appearing on their
right-hand side. As a first step in dealing with this, we can rescale both sides of each constraint:∑

P :e∈P

yP ≤ c(e) ⇐⇒
∑
P :e∈P

1

c(e)
yP ≤ 1.

The trouble with this rescaling is that now the constraint matrix entry aij is equal to 1/c(ei) if
edge ei belongs to path Pj. Our algorithm requires 0 ≤ aij ≤ 1 and this could be violated if
some edges have capacity less than 1.

The simplest way to deal with this issue is to preprocess the graph, scaling all edge capacities
by 1/cmin where cmin denotes the minimum edge capacity, to obtain a graph whose edge capacities
are bounded below by 1. Then we can solve for an approximate max-flow in the rescaled graph,
and finally scale that flow down by cmin to obtain a flow that is feasible — and still approximately
throughput-maximizing — in the original graph. To bound the number of iterations that this
algorithm requires, we must determine the value of γ for the rescaled graph. The rescaled capacity
of edge e is c(e)/cmin, so the matrix entry aij is cmin/c(ei) if edge ei belongs to path Pj. Thus,
the maximum entry in column j of the constraint matrix is cmin/cmin(Pj), where cmin(Pj) denotes
the minimum edge capacity in Pj. Thus γ = minj{cmin/cmin(Pj)} and the number of iterations
is

m lnm

γε2
=
m lnm

ε2
·max

j

{
cmin(Pj)

cmin

}
.

This could be a very large number of iterations, if the graph contains some very “fat” paths whose
minimum-capacity edge has much more capacity than the globally minimum edge capacity.

Rather than rescaling all of the edge capacities in the graph by the same common factor, a
smarter solution is to rescale the flow on path Pj by the factor cmin(Pj). More precisely, define
the “P -saturating flow ” to be the flow that sends cmin(P) units on every edge of P , and zero
on all other edges. Our LP will have variables yP for every path P that joins si to ti for some
i = 1, . . . , k, and a primal-feasible solution will correspond to a multicommodity flow that is a
weighted sum of P -saturating flows, scaled by the values yP .

This leads to the following linear programming formulation of maximum-throughput multi-
commodity flow.

max
∑

P cmin(P)yP
s.t.

∑
P :e∈P

cmin(P)
c(e)

yP ≤ 1 ∀e
yP ≥ 0 ∀P

(10)

The constraint matrix has entries aij =
cmin(Pj)

c(ei)
if ei belongs to Pj. By the definition of cmin(Pj),

this implies that all entries are between 0 and 1, and that every column of A has at least
one entry equal to 1. Thus the multiplicative weights method, applied to this LP formula-
tion, yields a (1 − 2ε)-approximate solution after at most m lnm

ε2
iterations. To conclude the

discussion of this algorithm, we should specify a procedure for solving the minimization problem
arg min{(xᵀtAy)/(pᵀy)} in every iteration of the while loop. If y is the indicator vector for a path

P , then pᵀy = cmin(P) while Ay is the vector whose ith entry is cmin(P)
c(ei)

if ei belongs to P , and 0

otherwise. Thus,

xᵀtAy =
∑
e∈P

cmin(P)xti
c(ei)

xᵀtAy

pᵀy
=
∑
e∈P

xti
c(ei)

so the minimization problem that must be solved in each loop iteration is merely finding a
minimum-cost path with respect to the edge costs cost(ei) = xti

c(ei)
.

Summarizing this discussion, we have the following algorithm which finds a (1−2ε)-approximate
maximum-throughput multicommodity flow in general graphs using m lnm

ε2
loop iterations, each

of which requires k minimum-cost path computations. In the pseudocode, the variable ze for an
edge e = ei keeps track of the fraction of e’s capacity that has already been consumed by the
flow sent in previous loop iterations. The variable xe = (1 + ε)ze/δ is a variable whose value in
loop iteration t is proportional to (but not equal to) the ith entry of the vector xt in the above
discussion. As in the preceding section, the algorithm’s validity is unaffected by the fact that the
vector (xe)e∈E is a scalar multiple of the vector xt in the above discussion, because the outcome
of the min-cost path computation with respect to edge cost vector x is unaffected by rescaling
the costs.

Algorithm 3 Max-throughput multicommodity flow algorithm, general case.

1: Given: Parameter ε > 0.
2: Initialize: δ = ε2/(lnm), x = 1, f1 = · · · = fk = 0, z = 0.
3: while z ≺ 1 do
4: for i = 1, . . . , k do
5: Pi ← minimum cost path from si to ti, with respect to edge costs xe/c(e).
6: end for
7: i← arg min1≤j≤k{cost(Pj)}.
8: Update flow fi by sending δcmin(Pj) units of flow on Pj.
9: for all e ∈ Pj do

10: r ← cmin(Pj)

c(e)
.

11: xe ← (1 + ε)rxe.
12: ze ← ze + δ r.
13: end for
14: end while

3.4 Maximum concurrent flow

The maximum concurrent flow problem can be solved using almost exactly the same technique.
While the packing formulation of maximum-throughput multicommodity flow involves packing
individual paths, each of which connects one source-sink pair, the natural packing formulation
of maximum concurrent multicommodity flow involves packing k-tuples of paths, one for each
source-sink pair. In the following LP, Q is an index that ranges over all such k-tuples. (As
before, this means that there are exponentially many variables yQ. Likewise, as before, this will
not inhibit our ability to design an efficient algorithm for approximately solving the LP, because
the algorithm need not explicitly represent all of the entries of the constraint matrix A or the
vector Y .) The notation nQ(e) refers to the number of paths in the k-tuple Q that contain edge e;

thus, its value is always an integer between 0 and k. The notation cmin(Q) refers to the minimum
capacity of an edge e such that nQ(e) > 0.

max
∑

Q cmin(Q)yQ

s.t.
∑

Q:nQ(e)>0
nQ(e)cmin(Q)

k·c(e) yQ ≤ 1 ∀e
yQ ≥ 0 ∀Q

(11)

For a path-tuple Q, the “Q-saturating flow” is a multicommodity flow that sends cmin(Q)/k
units of flow on each of the k paths in Q. (The scaling by 1/k is necessary, to ensure that the
Q-saturating flow doesn’t exceed the capacity of any edge, even if the minimum-capacity edge
of Q belongs to all k of the paths in Q.) A primal-feasible vector for the linear program 11 can
be interpreted as a weighted sum of Q-saturating flows, weighted by yQ. The coefficients in the
capacity constraint for each e are justified by the observation that a Q-saturating flow sends a
total of nQ(e)cmin(Q)/k units of flow on edge e.

The value of γ for this linear program is 1/k, so after at most km ln(m)/ε2 we obtain a
(1 − 2ε)-approximation to the maximum concurrent multicommodity flow. The minimization
problem arg min{(xᵀtAy)/(pᵀy)} has the following interpretation: when y is the indicator vector

of a path-tuple Q, then pᵀy = cmin(Q), while Ay is the vector whose ith component is
nQ(ei) cmin(Q)

k c(ei)
.

Thus, letting Q1, . . . , Qk denote the k paths that make up Q, we have

xᵀtAy =
∑
i

xt,i nQ(ei) cmin(Q)

k c(ei)
=
cmin(Q)

k

∑
i

xt,i
c(ei)

· nQ(ei) =
cmin(Q)

k

k∑
j=1

∑
ei∈Qj

xt,i
c(ei)

xᵀtAy

pᵀy
=

1

k

k∑
j=1

∑
ei∈Qj

xt,i
c(ei)

.

Hence, the ratio
xᵀtAy

pᵀy
is minimized by choosing Q to be the k-tuple consisting of the minimum-

cost path from sj to tj, for each j = 1, . . . , k, with respect to the edge costs
xt,i
c(ei)

.

Algorithm 4 Maximum concurrent multicommodity flow algorithm

1: Given: Parameter ε > 0.
2: Initialize: δ = ε2/(lnm), x = 1, f1 = · · · = fk = 0, z = 0.
3: while z ≺ 1 do
4: for i = 1, . . . , k do
5: Qi ← minimum cost path from si to ti, with respect to edge costs xe/c(e).
6: Update flow fi by sending δ cmin(Pj)/k units of flow on Qi.
7: end for
8: for all edges e do
9: nQ(e)← the number of i such that e ∈ Qi.

10: r ← cmin(Q)nQ(e)

k c(e)
.

11: xe ← (1 + ε)rxe.
12: ze ← ze + δ r.
13: end for
14: end while

4 The sparsest cut problem

Given the importance of the max-flow min-cut theorem in discrete mathematics and optimization,
it is natural to wonder if there is an analogue of this theorem for multicommodity flows.

If one adopts the interpretation that “a minimum cut is an edge set whose capacity certifies
an upper bound on the maximum flow,” then the next question is: what upper bounds on
throughput or concurrent multicommodity can be certified by an edge set?

Definition 1. Let G be a graph with edge capacities c(e) ≥ 0 and source-sink pairs {(si, ti)}ki=1.
An edge set A is said to separate a source-sink pair (si, ti) if every path from si to ti contains
an edge of A. A cut is an edge set that separates at least one source-sink pair. A multicut is an
edge set that separates every source-sink pair. The sparsity of a cut is its capacity divided by
the number of source-sink pairs it separates.

If G contains a multicut A of capacity c, then the throughput of any multicommodity flow
cannot exceed c, since each unit of flow must consume at least one unit of capacity on one of
the edges in A. A similar argument shows that if G contains a cut A with sparsity c, then the
maximum concurrent flow rate cannot exceed c.

Unlike in the case of single-commodity flows, it is not the case that the maximum throughput
is equal to the minimum capacity of a multicut, nor is it the case that the maximum concurrent
flow rate is equal to the sparsest cut value. In both cases, the relevant cut-defined quantity
may exceed the flow-defined quantity, by only by a factor of O(log k) in undirected graphs. This
bound is known to be tight up to constant factors. In directed graphs the situation is worse:
the minimum multicut may exceed the maximum throughput by Θ(k) and this is again tight in
terms of k, but the way this gap depends on n (the number of vertices) in the worst case remains
an open question.

In this section we will present a randomized algorithm to construct a cut whose (expected)
sparsity is within a O(log k) factor of the maximum concurrent flow rate, in undirected graphs.
Thus, we will be giving an algorithmic proof of the O(log k)-approximate max-flow min-cut
theorem for concurrent multicommodity flows.

4.1 Fractional cuts

To start designing the algorithm, let us recall the sparsest cut LP and its dual. (In the following
linear programs, the index Q ranges over k-tuples of paths joining each source to its sink.)

max
∑

Q yQ

s.t. ∀e
∑

Q nQ(e)yQ ≤ c(e)

∀Q yQ ≥ 0

min
∑

e c(e)xe

s.t. ∀Q
∑

e nQ(e)xe ≥ 1

∀e xe ≥ 0

If one interprets x = (xe)e∈E as a vector of edge lengths, then the expression
∑

e nQ(e)xe in the
dual LP represents the sum of the lengths of all paths in Q. Thus, a feasible solution of the dual
LP is an assignment of a length to each edge of G, such that the sum of shortest-path lengths
between all source-sink pairs is at least 1. For example, if there is a cut A whose sparsity is
C/p because it separates p source-sink pairs and has capacity C, then we obtain a dual-feasible
vector by setting xe = 1/p if e belongs to A and xe = 0 otherwise. For each of the p source-sink
pairs separated by A, their distance in the graph with edge lengths defined by x is at least

1/p, and therefore the combined distance of all source-sink pairs is at least 1 as required by the
dual feasibility condition. For this particular dual-feasible vector x, the dual objective function
is
∑

e∈A c(e)/p = C/p, which matches the sparsity of A. Thus, we have confirmed that the
optimum of the dual LP is a lower bound on the sparsest cut value. (Which we knew anyhow,
because the optimum of the dual LP coincides with the maximum concurrent multicommodity
flow rate, and we already knew that was a lower bound on the sparsest cut value.)

Owing to these considerations, a dual-feasible vector x is often called a fractional cut and∑
e c(e)xe is called the sparsity of the fractional cut. Our randomized algorithm for the sparsest

cut problem starts by computing an optimal (or approximately optimal) solution x to the dual
LP — for example, using the multiplicative weights algorithm developed in the preceding section
— and then “rounding” x to produce a cut whose sparsity exceeds the sparsity of x by a factor
of at most O(log k), in expectation.

4.2 Dependent rounding

One natural idea for transforming a fractional cut into a genuine cut is to sample a random edge
set by selecting each edge e independently with probability xe. This turns out to be a terrible
idea. For example, consider that case that k = 1 (a single-commodity flow problem) and G is the
complete bipartite graph K2,n; the two nodes on the left side of the bipartition are the source and
sink, s and t. In this graph there is a fractional cut defined by setting xe = 1/2 for every edge e.
However, if we construct a random edge by sampling every edge independently with probability
1/2, the probability of separating s from t is exponentially small in n.

Rather than independent randomized rounding, a better plan is to do some sort of dependent
rounding. Once again, the case of single-commodity flows is a fertile source of intuition. Suppose
x is a fractional cut for a single-commodity flow problem with source s and sink t. Using x, we
will construct a random cut based on a sort of “breadth-first search” starting from s. For every
vertex u let d(s, u) denote the length of the shortest path from s to u when edge lengths are
defined by x. Choose a uniformly random number r ∈ [0, 1], and cut all edges (u, v) such that
d(s, u) ≤ r < d(s, v). This random cut always separates s from t: on every path from s to t
there is an earliest vertex whose distance from s exceeds r, and the edge leading into this vertex
belongs to the cut. The expected capacity of the cut can be computed by linearity of expectation:
for any edge e = (u, v), the probability that the random cut contains e is |d(s, u)−d(s, v)|, which
is bounded above by xe. Hence the expected capacity of the random cut is bounded above
by
∑

e c(e)xe. We have thus shown that in the special case of single-commodity flow, for any
fractional cut of capacity C, there is a simple randomized algorithm to compute a cut whose
expected capacity is at most C.

The randomized sparsest cut algorithm that we will develop uses a similar dependent rounding
scheme based on breadth-first search, but this time starting from a set of sources rather than
just one source. The precise sampling procedure looks a little bit strange at first sight. Here it
is:

1. Sample t uniformly at random from the set {0, 1, . . . , blog(2k)c}.

2. Sample a random set W by selecting each element of the set {s1, t1, s2, t2, . . . , sk, tk} inde-
pendently with probability 2−t.

3. Sample a uniformly random r in [0, 1].

4. Cut all edges (u, v) such that d(u,W) < r < d(v,W), where the expression d(u,W) refers
to the minimum of d(u,w) over all w ∈ W .

Why does this work? We have to estimate two things: the expected capacity of the cut, and the
expected number of source-sink pairs that it separates.

Expected capacity. Estimating the expected capacity is surprisingly easy. It closely parallels
the argument in the single-commodity case. For an edge e = (u, v), no matter what set W is
chosen, we have

Pr(d(u,W) < r < d(v,W)) = |d(u,W)− d(v,W)| ≤ xe

so the expected combined capacity of the edges in the cut, by linearity of expectation, is at most∑
e c(e)xe, the value of the fractional cut x. Recall that this is equal to the maximum concurrent

flow rate, if x is an optimal solution to the dual of the maximum concurrent flow LP.

Expected number of separated pairs. For a source-sink pair (si, ti), the probability that
the cut separates si from ti is∫ 1

0

[Pr(d(si,W) < r < d(ti,W)) + Pr(d(ti,W) < r < d(si,W))] dr

To prove a lower bound on this integral, we will show that for 0 < r < 1
2
d(si, ti), the integrand

is bounded below by Ω(1/ log(2k)). This will imply that the integral is bounded below by
Ω(1/ log(2k))d(si, ti). Recall that dual-feasibility of x implies that

∑k
i=1 d(si, ti) = 1. Thus, the

expected number of source-sink pairs separated by our random cut is Ω(1/ log(2k)).
For 0 < r < 1

2
d(si, ti) let S and T denote the subsets of {s1, t1, . . . , sk, tk} consisting of all

terminals within distance r of si and ti, respectively. Note that S and T are non-empty (they
contain si and ti, respectively) and they are disjoint, because r < 1

2
d(si, ti). The event that

d(si,W) < r < d(ti,W) is the same as the event that S ∩W is nonempty but T ∩W is not,
and similarly for the event d(ti,W) < r < d(si,W). Hence the integrand Pr(d(si,W) < r <
d(ti,W)) + Pr(d(ti,W) < r < d(si,W)) is equal to the probability that precisely one of the
sets S ∩W,T ∩W is non-empty. Note that whenever |(S ∪ T) ∩W | = 1, it is always the case
that precisely one of the sets S ∩W,T ∩W is non-empty. Let h = |S ∪ T |. There is a unique
t ∈ {0, 1, . . . , blog(2k)c} such that 2t < h ≤ 2t+1. Assuming this value of t is sampled in the first
step of our sampling algorithm, the probability that W contains exactly one element of S ∪ T is
precisely

h · 2−t · (1− 2−t)h−1 =
h

2t
·
(

1 +
1

2t − 1

)−(h−1)

> e−(h−1)/(2t−1) ≥ e−3.

So the integrand is bounded below by e−3 · 1
log(2k)

when 0 < r < 1
2
d(si, ti), which completes the

proof.

4.3 Rejection sampling

You may notice that we promised a sampling algorithm that produces a random cut whose
expected sparsity is O(log k) times the maximum concurrent flow rate

∑
e c(e)xe. Instead we

have given a sampling algorithm that produces a random cut A such that

E[cap(A)]

E[sep(A)]
≤ e3 log(2k)

∑
e

c(e)xe. (12)

which is not quite the same thing. (Here, cap(A) denotes the capacity of A and sep(A) denotes
the number of source-sink pairs that it separates.) To fix this problem, we rewrite (12) as follows,
using the formula cap(A) = sep(A) · sparsity(A) along with the definition of the expected value
of a random variable:

e3 log(2k)
∑
e

c(e)xe ≥
∑

A Pr(A) cap(A)∑
A Pr(A) sep(A)

=

∑
A Pr(A) sep(A) · sparsity(A)∑

A Pr(A) sep(A)
.

So, if we adjust our sampling rule so that the probability of sampling a given cut A is scaled up
by sep(A) (and then renormalized so that probabilities sum up to 1) we get a random cut whose
expected sparsity is at most e3 log(2k)

∑
e c(e)xe, as desired. One way to adjust the probabilities

in this way is to use rejection sampling, which leads to the following algorithm.

Algorithm 5 Rounding a fractional cut to a sparse cut.

1: Given: fractional cut x defining shortest-path distances d(·, ·).
2: repeat
3: Sample t uniformly at random from the set {0, 1, . . . , blog(2k)c}.
4: Sample a random set W by selecting each element of the set {s1, t1, s2, t2, . . . , sk, tk}

independently with probability 2−t.
5: Sample a uniformly random r in [0, 1].
6: A = {(u, v) | d(u,W) < r < d(v,W)}.
7: Sample a uniformly random j ∈ {1, . . . , k}.
8: until j ≤ sep(A)

Why does this work? Let Pr(A) denote the probability of sampling A under the previous
algorithm. Imagine that we modified the algorithm to run a single iteration of the repeat loop
and either output A if it passes the test j ≤ sep(A) at the end of the loop, or else the algorithm
simply fails and outputs nothing. For any cut A, the probability that this modified algorithm
outputs A would be Pr(A) · sep(A)

k
. In other words, conditional on succeeding, the modified

algorithm samples a cut from exactly the rescaled distribution that we wanted to sample from.
By repeating the loop until it succeeds, we guarantee that the algorithm draws one sample from
this conditional distribution.

5 Application: zero-sum games

Definition 2. A two-player zero-sum game is one in which I = {1, 2} and u2(a1, a2) = −u1(a1, a2)
for all pure strategy profiles (a1, a2).

A famous theorem of von Neumann illustrates that the equilibria of two-player zero-sum
games are much simpler than the equilibria of general two-player games.

Theorem 1 (von Neumann’s minimax theorem). For every two-player zero-sum game with finite
strategy sets A1, A2, there is a number v ∈ R, called the game value, such that:

1.
v = max

p∈∆(A1)
min

q∈∆(A2)
u1(p, q) = min

q∈∆(A2)
max

p∈∆(A1)
u1(p, q)

2. The set of mixed Nash equilibria is nonempty. A mixed strategy profile (p, q) is a Nash
equilibrium if and only if

p ∈ arg max
p

min
q
u1(p, q)

q ∈ arg min
q

max
p
u1(p, q)

3. For all mixed Nash equilibria (p, q), u1(p, q) = v.

5.1 The main lemma

The hardest step in the proof of von Neumann’s minimax theorem is to prove that

max
p

min
q
u1(p, q) ≥ min

q
max
p
u1(p, q).

We will prove this fact using online learning algorithms. The basic idea of the proof is that if
the players are allowed to play the game repeatedly, using Hedge to adapt to the other player’s
moves, then low-regret property of Hedge guarantees that the time-average of each player’s
mixed strategy is nearly a best response to the time-average of the other player’s mixed strategy.

Lemma 2. For any two-player zero-sum game,

max
p∈∆(A1)

min
q∈∆(A2)

u1(p, q) ≥ min
q∈∆(A2)

max
p∈∆(A1)

u1(p, q).

Proof. Assume without loss of generality that 0 ≤ u1(a1, a2) ≤ 1 for all strategy profiles (a1, a2).
Let δ > 0 be an arbitrarily small positive number, and define n, T, ε as above. Player 1 still
uses Hedge(ε) to define a sequence of mixed strategies p1, p2, . . . , pT in response to the payoff
function induced by the opponent’s sequence of strategies. But player 2 now chooses its strategies
adversarially, according to the prescription

qt ∈ arg min
q
u1(pt, q). (13)

Note that the set of mixed strategies minimizing player 1’s payoff always contains a pure strategy,
so we may assume qt is a pure strategy if desired.

Define p, q as above. We find that

max
p

min
q
u1(p, q) ≥ min

q
u1(p, q)

= min
q

1

T

T∑
t=1

u1(pt, q)

≥ 1

T

T∑
t=1

min
q
u1(pt, q)

=
1

T

T∑
t=1

u1(pt, qt)

≥ max
p

1

T

T∑
t=1

u1(p, qt)− δ

= max
p
u1(p, q)− δ

≥ min
q

max
p
u1(p, q)− δ.

5.2 Proof of Theorem 1

In this section we complete the proof of von Neumann’s minimax theorem.

Proof of Theorem 1. For any mixed strategy profile (p̂, q̂) we have

u1(p̂, q̂) ≤ max
p
u1(p, q̂).

Taking the minimum of both sides as q̂ ranges over ∆(A2) we find that

min
q
u1(p̂, q) ≤ min

q
max
p
u1(p, q).

Taking the maximum of both sides as p̂ ranges over ∆(A1) we find that

max
p

min
q
u1(p, q) ≤ min

q
max
p
u1(p, q).

The reverse inequality was proven in Lemma 2. Thus we have established part (1) of Theorem 1.
Note that the sets B1 = arg maxp minq u1(p, q) and B2 = arg minq maxp u1(p, q) are both

nonempty. (This follows from the compactness of ∆(A1) and ∆(A2), the contintuity of u1, and
the finiteness of A1 and A2.) If p ∈ B1 and q ∈ B2 then

v = min
q
u1(p, q) ≤ u1(p, q) ≤ max

p
u1(p, q) = v

hence u1(p, q) = v. Moreover, since q ∈ B2, player 1 can’t achieve a payoff greater than v
against q by changing its mixed strategy. Similarly, since p ∈ B1, player 2 can’t force player 1’s
payoff to be less than v by changing its own mixed strategy. Hence (p, q) is a Nash equilibrium.
Conversely, if (p, q) is a Nash equilibrium, then

u1(p, q) = max
p
u1(p, q) ≥ v (14)

u1(p, q) = min
q
u1(p, q) ≤ v (15)

and this implies that in each of (14), (15), the inequality on the right side is actually an equality,
which in turn implies that p ∈ B1 and q ∈ B2. This completes the proof of (2) and (3).

The proof of the minimax theorem given here, using online learning, differs from the standard
proof which uses ideas from the theory of linear programming. The learning-theoretic proof has
a few advantages, some of which are spelled out in the following remarks.

Remark 1. The procedure of using Hedge to approximately solve a zero-sum game is remark-
ably fast: it converges to within δ of the optimum using only O(log(n)/δ2) steps, provided the
payoffs are between 0 and 1. (By “converges to within δ”, we mean that it outputs a pair of
mixed strategies, (p, q) such that minq u1(p, q) ≥ v − δ and maxp u1(p, q) ≤ v + δ, where v is the
game value.) This is especially important when one of the players has a strategy set whose size
is exponentially larger than the size of the natural representation of the game. See Example 1
below for an example of this.

Recall that in the second proof of Lemma 2 we remarked that player 2’s strategies qt could be
taken to be pure strategies. Note also that the Hedge algorithm used by player 1 only needs to
look at the scores in a column of the payoff matrix if the corresponding strategy has been used
by player 2 some time in the past. Thus, as long as we have an oracle for finding player 2’s best
response to any mixed strategy, we need only look at a very sparse subset of the payoff matrix
— a set of O(log(n)/δ2) columns — to compute a mixed strategy for player 1 which obtains an
additive δ-approximation to the game value. Again, see Example 1 for an example in which it
is reasonable to assume that we don’t have an explicit representation of the payoff matrix, but
we can examine any desired column and we have an oracle for finding player 2’s best response
to any mixed strategy.

Example 1 (The VPN eavesdropping game). Let G = (V,E) be an undirected graph. In the
“VPN eavesdropping game”, player 1 chooses an edge of G, and player 2 chooses a spanning tree
of G. For any edge e and spanning tree T , the payoff of player 1 is

u1(e, T) =

{
1 if e ∈ T
0 otherwise.

(We can think of player 1 as an eavesdropper who can listen on any single edge of G, and player
2 as someone who is setting up a virtual private network on the edges of T , to join together all
the nodes of G. The game is a win for player 1 if he or she eavesdrops on an edge which is part
of the VPN.)

Note that, in general, the cardinality of player 2’s strategy set is exponential in the size of
G. Thus the parameter n appearing in the proof of Lemma 2 will be exponential in the size of
the game’s natural representation. However, it is easy to examine any particular column of the
payoff matrix u1: the column corresponding to a spanning tree T will be a vector of 0’s and 1’s,
with 1’s in the rows corresponding to the edges of T . Moreover, it is easy to compute player 2’s
best response to any mixed strategy of player 1: one simply computes a minimum spanning tree
of G, where the weight of each edge is equal to the probability of player 1 picking that edge.

Consequently, there is an algorithm for approximately solving the game (up to an additive
error of δ) which requires only O(log(M)/δ2) minimum spanning tree computations, where M is
the total number of minimum spanning trees of G. (If G has V vertices, then by Cayley’s formula
M ≤ V V−2. Hence log(M) is always polynomial — in fact, nearly linear — in the number of
vertices of G.)

Remark 2. Another consequence of the second proof of Lemma 2 is that player 2 has a mixed
strategy which has sparse support — i.e. at most O(log(n)/δ2) strategies have positive probability
— yet it achieves an additive δ-approximation to the game value. By symmetry, player 1 also
has a mixed strategy with sparse support which achieves an additive δ-approximation to the
game value. Hence the game has an approximate Nash equilibrium in which both players use
sparsely-supported mixed strategies.

Remark 3. If player 2 is not playing rationally, by using Hedge player 1 comes close to achieving
the best possible payoff against whatever distribution of strategies player 2 happens to be using.
This property would not be ensured in repeated play if player 1 instead solved the game offline,
picked a strategy in arg maxp minq u1(p, q), and always used this strategy.

Remark 4. If we think about our intuition of how human beings learn to play games against
each other, the process is probably more similar to a learning algorithm such as Hedge than

to a linear programming algorithm such as the simplex method. Hence another benefit of the
learning-theoretic proof is that it gives an intuitive justification for why human beings are able
to find the equilibria of zero-sum games.

5.3 Yao’s lemma

The von Neumann minimax theorem has an important consequence in computer science. Suppose
we have a computational problem with a finite set of possible inputs I, and we are considering
a finite set of possible algorithms A. For example, I might be the set of all n-bit binary strings,
and A might be the set of all Boolean circuits of size at most n3 which accept an n-bit input
and return a valid output for the problem under consideration. Suppose we have a parameter
t(i, a) which corresponds to the cost of running algorithm a on input i. For example, t(i, a) could
denote the algorithm’s running time, or the cost of the solution it computes.

We may interpret this scenario as a two-player zero-sum game in which player 1 specifies
an input, player 2 specifies an algorithm, and t(i, a) is the payoff for player 1. Let D = ∆(I)
denote the set of all probability distributions on inputs, and let R = ∆(A) denote the set of all
probability distributions on algorithms, i.e. the set of all randomized algorithms. We can extend
the function t to mixed strategy profiles in the usual way, i.e.

t(d, r) =
∑
i∈I

∑
a∈A

t(i, a)d(i)r(a).

Lemma 3 (Yao’s Lemma).

max
d∈D

min
a∈A

t(d, a) = max
d∈D

min
r∈R

t(d, r) = min
r∈R

max
d∈D

t(d, r) = min
r∈R

max
i∈I

t(i, r).

Proof. The second equality is a restatement of von Neumann’s minimax theorem. The first and
third equalities follow from the fact that for any mixed strategy of one player, the other player
always has a best response which is a pure strategy, i.e.

∀d ∈ D min
r∈R

t(d, r) = min
a∈A

t(d, a)

∀r ∈ R max
d∈D

t(d, r) = max
i∈I

t(i, r).

6 Boosting

The multiplicative weights algorithm was applied to machine learning in a famous and influential
paper by Freund and Schapire, that presented an algorithm called AdaBoost that shows how to
train a very accurate classifier, given access to a subroutine called a “weak learner” that is capable
of outputting classifiers that perform only slightly better than chance.

In this section we will present and analyze a simplified form of AdaBoost, in a setting where
there are n training examples numbered i = 1, . . . , n, and each has a label y(i) ∈ {±1}. The
weak learner is represented by an oracle WL whose input is a probability distribution π ∈∆(n)
and whose output is a hypothesis h : [n]→ {±1}.

The error of hypothesis h on example i is defined to be

Erri(h)
∆
= 1

2
[1− h(i)y(i)] =

{
1 if h(i) 6= y(i)

0 otherwise.

More generally, the training error of h with respect to a distribution π is

Errπ(h) = Ei∼π[Erri(h)] =
1

2

(
1 −

n∑
i=1

π(i)h(i)y(i)

)
.

The training error Errπ(h) represents the probability that h makes an error when an example i
is randomly sampled from π and classified according to h.

Let us assume that the weak learner satisfies the following guarantee for some ε > 0: for every
distribution π, the hypothesis WL(π) has training error less than 1

2
− ε. The boosting algorithm

works as follows: it runs a sequence of T iterations, where T is an odd number greater than
2 ln(n)/(ε2 − ε3). Each iteration t constructs a distribution πt using the multiplicative weights
algorithm, where the “cumulative reward” ri(1 : t − 1) is interpreted as the number of times i
was misclassified by the first t− 1 hypotheses:

ri(1 : t− 1) =
1

2

(
1 −

t−1∑
s=1

hs(i)y(i)

)

πt(i) =
(1 + ε)ri(1:t−1)∑n
j=1(1 + ε)rj(1:t−1)

.

Iteration t ends by calling the weak learner to obtain a hypothesis ht = WL(πt). After completing
all T iterations, the boosting algorithm then classifies each example by taking a majority vote
of the hypotheses h1, . . . , hT :

h(i) = maj(h1(i), . . . , hT (i)) = sgn

(
T∑
t=1

ht(i)

)
.

Theorem 4. If each hypothesis ht has training error less than 1
2
− ε with respect to distribution

πt, i.e.
∀t Errπt(ht) <

1
2
− ε,

then the classifier h defined by the boosting algorithm classifies every training example correctly.

Proof. The performance guarantee for the multiplicative weights algorithm ensures that

∀i (1− ε)ri(1 : T)− ln(n)

ε
<

T∑
t=1

n∑
i=1

πt(i)

[
1

2
− 1

2
ht(i)yt(i)

]
=

T∑
t=1

Errπt(ht) <
(

1
2
− ε
)
T.

Rearranging terms and dividing both sides by 1− ε we conclude that

∀i ri(1 : T) <

(1
2
− ε

1− ε

)
T +

ln(n)

ε(1− ε)
<

(
1

2
− ε

2

)
T +

ln(n)

ε(1− ε)
<
T

2
(16)

since our choice of T ensures that ln(n)
ε(1−ε) <

εT
2

. Recalling that ri(1 : T) is equal to the number of

times i is misclassified by the hypotheses h1, . . . , hT , we see that (16) implies that i is classified
correctly by the majority of hypotheses in h1, . . . , hT .

Remark 5. Theorem 4 is really the start of the boosting story, not the end of the story. In
applications of boosting, the goal is not to learn a hypothesis with zero training error but to

learn a hypothesis with low test error or generalization error, meaning that it performs well
on previously unseen examples, as long as those examples and their labels were sampled from
the same distribution that produced the training set. Running the boosting algorithm until it
attains zero error on the training set can potentially result in overfitting: learning a hypothesis
that “memorizes the labels of the training examples” but doesn’t generalize well when presented
with unseen examples. One of the key objectives of research on boosting, therefore, was to
understand the circumstances under which one could prove upper bounds on the generalization
error of the procedure.

Remark 6. Often it is not necessary to learn a hypothesis that classifies every training example
correctly, and it would suffice to learn one whose training error (under the uniform distribution)
is less than δ. A modification of the proof of Theorem 4 shows that O(log(1/δ)/ε2) training
iterations suffice to achieve this objective. The key ingredient is a modified performance guarantee
for Hedge that says that for any r∗ ≥ 0, if at least δn of the “experts” i ∈ [n] have cumulative
payoff greater than r∗, then the cumulative payoff of the Hedge algorithm is greater than
(1 − ε)r∗ − ln(1/δ)

ε
. The proof is the same, except that when bounding log1+εW (t) from below,

rather than using 1
n
(1+ε)ri(1:t) where i is the best-performing expert, we use the combined weight

of the δn best-performing experts to improve this bound to δn
n

(1 + ε)r∗ .

A An inequality involving logarithms

Lemma 5. For x > 0,
1

x
ln(1 + x) > 1− x. (17)

Proof. We have

ln

(
1

1 + x

)
= ln

(
1− x

1 + x

)
< −

(
x

1 + x

)
.

Multiplying both sides by −1/x,
1

x
ln(1 + x) >

1

1 + x
.

Finally, the inequality 1 > (1− x)(1 + x) implies that 1
1+x

> 1− x, which concludes the proof of
the lemma.

