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Network flows are a structure with many nice applications in algorithms and combi-
natorics. A famous result called the max-flow min-cut theorem exposes a tight relationship
between network flows and graph cuts; the latter is also a fundamental topic in combinatorics
and combinatorial optimization, with many important applications.

These notes introduce the topic of network flows, present and analyze some algorithms
for computing a maximum flow, prove the max-flow min-cut theorem, and present some
applications in combinatorics. There are also numerous applications of these topics elsewhere
in computer science. For example, network flow has obvious applications to routing in
communication networks. Algorithms for computing minimum cuts in graphs have important
but less obvious applications in computer vision. Those applications (along with many other
practical applications of maximum flows and minimum cuts) are beyond the scope of these
notes.

1 Basic Definitions

We begin with the following definition of flow.

Definition 1. Let V be a finite set with two distinguished elements s, t, called the source
and sink. An s− t flow in G is a two-variable function f : V × V → R that satisfies:

• skew-symmetry: f(u, v) + f(v, u) = 0 for all u, v ∈ V .

• flow conservation:
∑

v∈V f(u, v) = 0 for all u ∈ V .

A flow network consists of a vertex set V with source and sink s, t, and a capacity function
c : V × V → [0,∞]. A flow is feasible with respect to c if it obeys

• capacity constraints: f(u, v) ≤ c(u, v) for all u, v ∈ V .

The value of a flow f is the total amount of flow leaving the source: val(f) =
∑

v∈V f(u, v).
A maximum flow in flow network G = (V, s, t, c) is a feasible flow of maximum value.

A useful interpretation of flows is that “a flow is a weighted sum of source-sink paths and
cycles”. To flesh out this interpretation, we have the following definition and lemma.

Definition 2. Suppose P = v0, v1, . . . , vk is a sequence of vertices forming either:

• a simple path connecting s and t, i.e. {v0, vk} = {s, t} and v0, . . . , vk are all distinct;
or

• a simple cycle, i.e. v0 = vk and v1, . . . , vk are all distinct.
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The elementary flow fP is the flow defined by

f(u, v) =


1 if ∃i s.t. u = vi, v = vi+1

−1 if ∃i s.t. u = vi+1, v = vi

0 otherwise.

An elementary decomposition of a flow f is an expression f =
∑

P wPf
p, where each of the

flows fP in the sum on the right side is an elementary flow and each of the weights wP is
non-negative.

Lemma 1. Every flow f has an elementary decomposition. The value val(f) is the weight
of s-t paths minus the weight of t-s paths in any elementary decomposition.

Proof. If f is a flow, let E+(f) = {(u, v) | f(u, v) > 0}. To prove that f has an elementary
decomposition we use induction on the number of elements of E+(f). When this number
is zero, the lemma holds vacuously (i.e., the decomposition is an empty sum), so assume
|E+(f)| > 0. We claim this assumption implies there exists an s-t path, t-s path, or di-
rected cycle contained in E+(f). If E+(f) does not contain a directed cycle then (V,E+(f))
is a directed acyclic graph with non-empty edge set. As such, it must have a source ver-
tex, i.e. a vertex u0 with at least one outgoing edge, but no incoming edges. Construct a
path P = u0, u1, . . . , uk starting from u0 and choosing ui, for i > 1, by following an edge
(ui−1, ui) ∈ E+(f) if there is at least one such. Since E+(f) contains no cycles this greedy
path construction process must terminate at a vertex with no outgoing edges. Flow conser-
vation implies that every vertex other than s and t which belongs to an edge in E+(f) has
both incoming and outgoing edges. Therefore, the endpoints of P are s and t (in some order)
which completes the proof that E+(f) has either a path joining the source to the sink (in
some order) or a directed cycle. Now let P denote the sequence of vertices constituting this
path or cycle, and let w = min{f(u, v) | u, v consecutive in P}. The flow g = f − wfP sat-
isfies |E+(g)| < |E+(f)|, so by the induction hypothesis g has an elementary decomposition.
Now f = g + wfP shows that f has an elementary decomposition as well.

To finish proving the lemma, we need to show that the value of f equals the weight of s-t
paths minus the weight of t-s paths in an elementary decomposition of f . This equation is
true when f itself is an elementary flow and the decomposition is the trivial decomposition
consisting of f itself. By linearity, it holds true for every elementary decomposition of every
flow.

Maximum flow turns out to be a versatile problem that encodes many other algorithmic
problems. For example, the maximum bipartite matching in a graph G = (U, V,E) can be
encoded by a flow network with vertex set U ∪ V ∪ {s, t} and with

c(a, b) =


1 if a = s, b ∈ U or a ∈ V, b = t

1 if a ∈ U, b ∈ V, (a, b) ∈ E
0 otherwise.

For each edge (u, v) ∈ E, the flow network contains a three-hop path P (u, v) = s, u, v, t, and
for any matching M in G one can sum up the elementary flows fP (u,v) of the edges of M to
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obtain a valid flow f such that val(f) = |M |. Conversely, any feasible flow f satisfying fe ∈ Z
for all e is obtained from a matching M via this construction. As we will see shortly, in any
flow network with integer edge capacities, there always exists an integer-valued maximum
flow. Thus, the bipartite maximum matching problem reduces to maximum flow via the
simple reduction given in this paragraph.

The similarity between maximum flow and bipartite maximum matching also extends
to the algorithms for solving them. The most basic algorithms for solving maximum flow
revolve around a graph called the residual graph which generalizes the directed graph GM

that we defined when presenting algorithms for the bipartite maximum matching problem.

Definition 3. If G = (V, s, t, c) is a flow network and f is a feasible flow in G, the residual
network Gf is the flow network Gf = (V, s, t, c − f). The capacity of edge (u, v) in Gf ,
namely cf (u, v) = c(u, v)− f(u, v), is called the residual capacity of (u, v) with respect to f .
If c(u, v) =∞ and f(u, v) ∈ R we adopt the convention that c(u, v)− f(u, v) =∞.

Lemma 2. If f is a feasible flow in G then there is a bijection between feasible flows in G
and in Gf , defined by mapping a feasible flow f ′ in G to the flow h = f ′ − f in Gf . This
bijection restricts to a bijection on the sets of maximum flows in G and Gf .

Proof. The functions f ′ 7→ f ′ − f and h 7→ h+ f are mutually inverse bijections, so we just
need to verify that they map feasible flows in G to feasible flows in Gf or vice-versa. Suppose
f ′ and h are flows satisfying h = f ′ − f . We have the following chain of equivalences.

h is feasible in Gf ⇔ ∀u, v h(u, v) ≤ c(u, v)− f(u, v)

⇔ ∀u, v h(u, v) + f(u, v) ≤ c(u, v) ⇔ f ′ is feasible in G

where the last equivalence holds because f ′ = h + f . This completes the proof that flows
in G and Gf are in bijective correspondence. The bijection preserves the difference in value
between two flows, i.e. val(h1) − val(h0) = val(h1 + f) − val(h0 + f), so in particular the
bijection preserves the property of being a maximum flow.

2 The Max-Flow Min-Cut Theorem

The max-flow min-cut theorem is an important result that establishes a tight relationship
between maximum flows and cuts separating the source from the sink. We first present some
definitions involving cuts, and then we present and prove the theorem.

Definition 4 (s-t cut). An s-t cut in a flow network G = (V, s, t, c) is a partition of the
vertex set V into two subsets S, T such that s ∈ S and t ∈ T . An edge e = (u, v) crosses
the cut (S, T ) if u ∈ S and v ∈ T . (Note that edges from T to S do not cross the cut
(S, T ), under this definition.) The capacity of cut (S, T ), denoted by c(S, T ), is the sum of
the capacities of all edges that cross the cut:

c(S, T ) =
∑
u∈S

∑
v∈T

c(u, v).

A minimum s-t cut is an s-t cut of minimum capacity.
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For any flow f and pair of vertex sets Q,R let f(Q,R) denote the net flow from Q to R:

f(Q,R) =
∑
u∈Q

∑
v∈R

f(u, v).

Note that the expression f(Q,R) includes positive contributions from edges (u, v) with
u ∈ Q, v ∈ R, f(u, v) > 0 and negative contributions from edges (v, u) with u ∈ Q, v ∈
R, f(v, u) > 0, since, in the latter case, f(u, v) = −f(v, u). That is why it is best to de-
scribe f(Q,R) as the net flow from Q to R: if 100 units of flow, in total, are flowing from
vertices in Q to vertices in R, while 40 units of flow, in total, are flowing from vertices in R
to vertices in Q, then f(Q,R) = 100− 40 = 60.

Lemma 3. If G = (V, s, t, c) is a flow network, f is any flow in G, and S, T is any s-t cut,
then val(f) = f(S, T ). If f is a feasible flow, then val(f) ≤ c(S, T ) with equality if and only
if every edge from S to T has zero residual capacity.

Proof. It is clear from the definition of f(Q,R) that it is additive under disjoint unions: if R
is partitioned into disjoint sets R1, R2 then f(Q,R) = f(Q,R1) + f(Q,R2). Also, it follows
easily from skew-symmetry then f(Q,Q) = 0 for all Q:

f(Q,Q) =
∑
u∈Q

∑
v∈Q

f(u, v) =
1

2

∑
u∈Q

∑
v∈Q

[f(u, v) + f(v, u)] = 0.

These two properties of the function f(Q,R) justify the first line of the following calculation,
where S, T is an arbitrary s-t cut.

f(S, T ) = f(S, T ) + f(S, S) = f(S, V )

=
∑
u∈S

∑
v∈V

f(u, v)

=
∑
v∈V

f(s, v) = val(f).

The last line follows from the one above by applying the flow conservation equation at every
u ∈ S \ {s}.

Now supposing f is feasible, we have f(u, v) ≤ c(u, v) for every u, v. Summing these
inequalities over all pairs u ∈ S, v ∈ T we find that f(S, T ) ≤ c(S, T ), with equality if and
only if f(u, v) = c(u, v) for all u ∈ S, v ∈ T . Recalling that f(S, T ) = val(f), this proves the
second part of the lemma.

Definition 5. If G = (V, s, t, c) is a flow network and f is a feasible flow in G, an augmenting
path with respect to f is a path from s to t whose edges all have strictly positive residual
capacity.

As an example of residual graphs and augmenting paths, suppose we have a bipartite
graph G0 = (L,R,E) and consider the flow network G = (V, s, t, c) with vertices and capac-
ities defined as follows. (When referring to edges of G0, we will adopt the convention that
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we always represent such edges as ordered pairs (u, v) with u ∈ L, v ∈ R.)

V = {s, t} ∪ L ∪Rc(u, v) =


1 if u = s, v ∈ L or (u, v) ∈ E or u ∈ R, v = t

−1 if u ∈ L, v = s or (v, u) ∈ E or u = t, v ∈ R
0 otherwise.

For every edge e = (u, v) ∈ E there is a corresponding s-t path P (e) in G that visits the
vertices s, u, v, t in sequence. For any matching M in G0 there is a corresponding feasible
flow f =

∑
e∈M fP (e) in G. Let F denote the set of vertices of G0 that are free in M . In the

residual graph Gf , the following edges have positive residual capacity.

• edges (u, v) such that (u, v) ∈ E \M

• edges (v, u) such that (u, v) ∈M

• edges (s, u) such that u ∈ L ∩ F

• edges (v, t) such that v ∈ R ∩ F

• edges (u, s) such that u ∈ L \ F

• edges (t, v) such that v ∈ R \ F

Hence, the structure of Gf encodes the edge set of the residual graph GM (as the set of di-
rected edges with positive residual capacity having endpoints in L∪R) as well as information
about which vertices are free in M (in the form of the orientations of edges with positive
residual capacity incident to s and t). In particular, every augmenting path in Gf is formed
from an M -augmenting path P0 in G0 by sequencing the vertices of P0 to start in L∩F and
end in R ∩ F , then prepending s to the start of the sequence and appending t to the end of
the sequence. Conversely, if we take any M -augmnting path and applying this construction
it always yields an augmenting path in Gf .

The following theorem asserts four equivalent conditions characterizing maximum flows
in a network. The equivalence of the first and fourth conditions is usually called the max-flow
min-cut theorem.

Theorem 4 (Max-flow Min-cut). For any flow network G = (V, s, t, c) and feasible flow f ,
the following are equivalent.

1. f is a maximum flow in G.

2. There is no augmenting path with respect to f .

3. There exists an s-t cut S, T such that c(S, T ) = val(f).

4. The value of f equals the capacity of any minimum s-t cut.
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Proof. To prove (1) implies (2) it is convenient to establish the contrapositive. Let P be
an augmenting path with respect to f , and let δ(P ) > 0 be the minimum residual capacity
among the edges of P . The flow f + δ(P ) · fP is feasible and has value val(f + δ(P ) · fP ) =
val(f) + δ(P ), which is strictly greater than val(f), so f is not a maximum flow.

The proof that (2) implies (3) is constructive. Define an augmenting walk to be any
sequence of vertices s = u0, u1, . . . , uk such that (ui, ui+1) has positive residual capacity for
all i < k. Assuming f has no augmenting path, let S be the set of all vertices u ∈ V such that
there is a augmenting walk ending at u, and let T be the complement of S. By assumption,
t 6∈ S, whereas s ∈ S because the one-element sequence (u0) is trivially an augmenting walk.
Hence, S, T indeed forms an s-t cut. Now, consider any u ∈ S, v ∈ T . Since u ∈ S there is
an augmenting walk s = u0, u1, . . . , uk = u. Since v ∈ T , the sequence u0, u1, . . . , uk, v is not
an augmenting walk, hence edge (u, v) = (uk, v) has zero residual capacity. We have proven
that f(u, v) = c(u, v) for all u ∈ S, v ∈ T . Summing this equation over all such pairs (u, v)
implies val(f) = c(S, T ).

To prove that (3) implies (4), suppose f is a feasible flow and S, T is an s-t cut such
that val(f) = c(S, T ). Now let S ′, T ′ denote any minimum s-t cut. By the definition of
a minimum cut, c(S ′, T ′) ≤ c(S, T ). On the other hand, by Lemma 3, c(S ′, T ′) ≥ val(f).
Since val(f) = c(S, T ), we have established that c(S ′, T ′)− c(S, T ) is both non-negative and
non-positive, i.e. it must equal zero.

To prove that (4) implies (1), suppose that f is a feasible flow, S, T is a minimum s-t cut,
and val(f) = c(S, T ). If f ′ is any other feasible flow, we have val(f ′) ≤ c(S, T ) by Lemma 3.
Hence val(f ′) ≤ val(f) for every feasible flow f ′, i.e. f is a maximum flow.

3 The Ford-Fulkerson Algorithm

The first paragraph of the proof of Theorem 4 constitutes the basis for the Ford-Fulkerson
algorithm, which computes a maximum flow iteratively, by initializing f = 0 and repeatedly
replacing f with f + δ(P ) ·fP where P is an augmenting path with respect to f , and δ(P ) is
the minimum residual capacity of an edge in P . The algorithm terminates when Gf no longer
contains an augmenting path, at which point Theorem 4 guarantees that f is a maximum
flow.

In all of the algorithms presented in this section, we adopt the convention that the edge
set of Gf is considered to be the set pairs (u, v) with strictly positive residual capacity.
In particular, under this interpretation of the edge set of Gf , the term “augmenting path”
becomes synonymous with “s-t path in Gf”.
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Algorithm 1 FordFulkerson(G)

1: f ← 0; Gf ← G
2: while Gf contains an s-t path P do
3: Let P be one such path.
4: Let δ(P ) = min{c(u, v)− f(u, v) | (u, v) an edge of P}.
5: f ← f + δ(P ) · fP // Augment f using P .
6: Update Gf .
7: end while
8: return f

Theorem 5. In any flow network with edge capacities in N ∪ {∞} and with finite mini-
mum cut capacity, any execution of the Ford-Fulkerson algorithm terminates and outputs an
integer-valued maximum flow, f ∗, after at most val(f ∗) iterations of the main loop.

Proof. At any time during the algorithm’s execution, the residual capacities c(u, v)−f(u, v)
are all integers; this can easily be seen by induction on the number of iterations of the main
loop, the key observation being that the quantity δ(P ) computed during each loop iteration
must always be an integer.

It follows that val(f) increases by at least 1 during each loop iteration, so the algorithm
terminates after at most val(f ∗) loop iterations, where f ∗ denotes the output of the algorithm.
Finally, Theorem 4 ensures that f ∗ must be a maximum flow because, by the algorithm’s
termination condition, its residual graph has no augmenting path.

Regarding the running time of the Ford-Fulkerson algorithm, we will assume the flow
network G = (V, s, t, c) has n vertices and m ≥ n− 1 edges with non-zero capacity. Flows f
and residual graphs Gf will be represented in O(m) space by storing the flow values f(u, v)
and residual capacities cf (u, v) = c(u, v) − f(u, v) only for those pairs (u, v) such that at
least one of c(u, v), c(v, u) is strictly positive. Each iteration of the Ford-Fulkerson main
loop can be implemented in O(m) time, i.e. the time required to search for the augmenting
path P in Gf (using breadth-first or depth-first search) and to construct the new residual
graph after updating f . In integer-capacitated graphs, we have seen that the Ford-Fulkerson
algorithm runs in at most val(f ∗) linear-time iterations, where f ∗ is a maximum flow, hence
the algorithm’s running time is O(m val(f ∗)).

4 The Edmonds-Karp and Dinitz Algorithms

The Ford-Fulkerson algorithm’s running time is pseudopolynomial, but not polynomial. In
other words, its running time is polynomial in the magnitudes of the numbers constituting
the input (i.e., the edge capacities) but not polynomial in the number of bits needed to
describe those numbers. To illustrate the difference, consider a flow network with vertex set
{s, t, u, v} and edge set {(s, u), (u, t), (s, v), (v, t), (u, v)}. The capacities of the edges are

c(s, u) = c(u, t) = c(s, v) = c(v, t) = 2n, c(u, v) = 1.
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The maximum flow in this network sends 2n units on each of the paths 〈s, u, t〉 and 〈s, v, t〉,
and if the Ford-Fulkerson algorithm chooses these as its first two augmenting paths, it
terminates after only two iterations. However, it could alternatively choose 〈s, u, v, t〉 as its
first augmenting path, sending only one unit of flow on the path. This results in adding the
edge (v, u) to the residual graph, at which point it becomes possible to send one unit of flow
on the augmenting path 〈s, u, v, t〉. This process iterates 2n times.

Later in this section we will present two maximum flow algorithms with strongly poly-
nomial running times. This means that if we count each arithmetic operation is consuming
only one unit of running time (regardless of the number of bits of precision of the num-
bers involved) then the running time is bounded by a polynomial function of the number of
vertices and edges of the network.

4.1 Digression: Rational vs. Irrational Capacities

If one runs the Ford-Fulkerson algorithm in a network G = (V, s, t, c) whose capacities are
rational numbers, and the minimum cut capacity in G is finite, then the algorithm always
terminates. This is because if the capacities are all multiples of 1/k, then there is a related
flow network k ·G = (V, s, t, k · c) with integer-valued capacities, and the operation of scaling
by k defines a bijection between executions of Ford-Fulkerson in G and in k · G. Since we
have proven in Section 3 that every execution in network k · G terminates, the same must
be the case for network G.

However, in a flow network whose edge capacities are irrational numbers, the Ford-
Fulkerson algorithm may run through its main loop an infinite number of times without
terminating.

Example 1. Let G be a flow network with vertex set V = {s, t} ∪ {ui, vi | i = 0, 1, 2} and
with capacities defined as follows.

• For i ∈ {0, 1, 2} there are infinite capacity edges (s, ui), (vi, ui), (vi, t).

• For all pairs of distinct indices i, j ∈ {0, 1, 2} there are infinite capacity edges (ui, uj)
and (vi, vj).

• Let r denote the positive root of the quadratic equation r2 + r = 1, i.e. r = 1
2
(
√

5− 1).
The edges (u0, v0) and (u1, v1) have capacities r and 1, respectively.

• All other capacities are zero.

If P0, P1 denote the paths s, u0, v0, t and s, u1, v1, t, respectively, the maximum flow in G is
rfP0 + fP1 , with value r+ 1, the golden ratio. An execution of the Ford-Fulkerson algorithm
that chooses augmenting paths P0, P1, in either order, will discover this maximum flow in just
two iterations of the main loop. However, it is also possible to construct a non-terminating
execution of the Ford-Fulkerson algorithm using the circuitous augmenting paths

P012 = s, u0, v0, v1, u1, u2, v2, t

P120 = s, u1, v1, v2, u2, u0, v0, t

P201 = s, u2, v2, v0, u0, u1, v1, t
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as we now demonstrate.

First, observe that every edge of P120 has positive capacity in G. In fact, the only two
finite-capacity edges of P120 are (u1, v1) an (u0, v0) with capacities 1 and r, respectively.
Hence, δ(P120) = r. If we augment path P120, we will obtain a residual graph in which
the infinite-capacity edges still have infinite residual capacity, and the only two edges with
non-zero finite residual capacity are edges (u1, v1) and (u2, v2). Their residual capacities are

cf (u1, v1) = 1− r = r2

cf (u2, v2) = 0 + r = r.

In other words, in one iteration we have gone from a network whose three middle edges
(u0, v0), (u1, v1), (u2, v2) have residual capacities r, 1, 0, respectively, to a network where the
three middle edges have residual capacities 0, r2, r. This residual network is the same as the
original flow network, up to rescaling capacities by r and permuting the index set {0, 1, 2}
cyclically. By induction, we may continue cycling through augmenting paths P201, P012, P120

ad infinitum.

It is interesting that the existence of the non-terminating execution of the Ford-Fulkerson
algorithm presented in Example 1 implies that r = 1

2
(
√

5 − 1) is irrational. This can be

interpreted as an algorithmic proof of the irrationality of
√

5, in contrast to the usual number-
theoretic proof that involves positing that

√
5 = p

q
for relatively prime integers p, q and

deriving a contradiction by reasoning about the divisibility of p and q by 5.

4.2 The Edmonds-Karp Algorithm

The Edmonds-Karp algorithm refines the Ford-Fulkerson algorithm by always choosing the
augmenting path with the smallest number of edges.

Algorithm 2 EdmondsKarp(G)

1: f ← 0; Gf ← G
2: while Gf contains an s− t path P do
3: Let P be an s− t path in Gf with the minimum number of edges.
4: f ← f + δ(P ) · fP // Augment f using P .
5: Update Gf

6: end while
7: return f

To begin our analysis of the Edmonds-Karp algorithm, note that the s-t path in Gf with
the minimum number of edges can be found in O(m) time using breadth-first search. Once
path P is discovered, it takes only O(n) time to augment f using P and O(n) time to update
Gf , so we see that one iteration of the while loop in EdmondsKarp(G) requires only O(m)
time. However, we still need to figure out how many iterations of the while loop could take
place, in the worst case.
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To reason about the maximum number of while loop iterations, we will assign a distance
label d(v) to each vertex v, representing the length of the shortest path from s to v in Gf .
We will show that d(v) never decreases during an execution of EdmondsKarp(G). Recall
that the same method of reasoning was instrumental in the running-time analysis of the
Hopcroft-Karp algorithm.

Any edge (u, v) in Gf must satisfy d(v) ≤ d(u) + 1, since a path of length d(u) + 1 can
be formed by appending (u, v) to a shortest s-u path in Gf . Call the edge advancing if
d(v) = d(u) + 1 and retreating if d(v) ≤ d(u). Any shortest augmenting path P in Gf is
composed exclusively of advancing edges. Let Gf and G̃f denote the residual graph before
and after augmenting f using P , respectively, and let d(v), d̃(v) denote the distance labels
of vertex v in the two residual graphs. Every edge (u, v) in G̃f is either an edge of Gf or the
reverse of an edge of P ; in both cases the inequality d(v) ≤ d(u) + 1 is satisfied. Therefore,
on any path in G̃f the value of d increases by at most one on each hop of the path, and
consequently d̃(v) ≥ d(v) for every v. This proves that the distance labels never decrease,
as claimed earlier.

When we choose augmenting path P in Gf , let us say that edge e ∈ E(Gf ) is a bottleneck
edge for P if it has the minimum residual capacity of any edge of P . Notice that when
e = (u, v) is a bottleneck edge for P , then it is eliminated from Gf after augmenting f using
P . Suppose that d(u) = i and d(v) = i + 1 when this happens. In order for e to be added
back into Gf later on, edge (v, u) must belong to a shortest augmenting path, implying
d(u) = d(v) + 1 ≥ i + 2 at that time. Thus, the total number of times that e can occur as
a bottleneck edge during the Edmonds-Karp algorithm is at most n/2. There are 2m edges
that can potentially appear in the residual graph, and each of them serves as a bottleneck
edge at most n/2 times, so there are at most mn bottleneck edges in total. In every iteration
of the while loop the augmenting path has at least one bottleneck edge, so there are at most
mn while loop iterations in total. Earlier, we saw that every iteration of the loop takes
O(m) time, so the running time of the Edmonds-Karp algorithm is O(m2n).

4.3 The Dinitz Algorithm

Similar to the way that the Hopcroft-Karp algorithm improves the running time for finding
a maximum matching in a graph by finding a maximal set of shortest augmenting paths all
at once, there is a maximum-flow algorithm due to Dinitz that improves the running time
of the Edmonds-Karp algorithm by finding a so-called blocking flow in the residual graph.

Definition 6. If G is a flow network, f is a flow, and h is a flow in the residual graph Gf ,
then h is called a blocking flow if every shortest augmenting path in Gf contains at least one
edge that is saturated by h, and every edge e with he > 0 belongs to a shortest augmenting
path.
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Algorithm 3 Dinitz(G)

1: f ← 0; Gf ← G
2: while Gf contains an s− t path P do
3: f ← f + BlockingFlow(Gf )
4: Update Gf

5: end while
6: return f

7: function BlockingFlow(Gf )
8: h← 0
9: Let G′ be the subgraph composed of advancing edges in Gf .
10: Initialize c′(e) = cf (e) for each edge e in G′.
11: Initialize stack with 〈s〉.
12: repeat
13: Let u be the top vertex on the stack.
14: if u = t then
15: Let P be the path defined by the current stack. // Now augment h using P .
16: Let δ(P ) = min{c′(e) | e ∈ P}.
17: h← h+ δ(P ) · fP .
18: c′(e)← c′(e)− δ(P ) for all e ∈ P .
19: Delete edges with c′(e) = 0 from G′.
20: Let (u, v) be the newly deleted edge that occurs earliest in P .
21: Truncate the stack by popping all vertices above u.
22: else if G′ contains an edge (u, v) then
23: Push v onto the stack.
24: else
25: Delete u and all of its incoming edges from G′.
26: Pop u off of the stack.
27: end if
28: until stack is empty
29: return h
30: end function

Dinitz’s algorithm initializes f = 0 and repeatedly updates f by adding a blocking flow,
until no augmenting paths remain. Later we will discuss and analyze the algorithm for
computing a blocking flow. For now, let us focus on bounding the number of iterations of
the main loop. As in the analysis of the Edmonds-Karp algorithm, the distance d(v) of any
vertex v from the source s can never decrease during an execution of Dinitz’s algorithm.
Furthermore, the length of the shortest path from s to t in Gf must strictly increase after
each loop iteration: the edges (u, v) which are added to Gf at the end of the loop iteration
satisfy d(v) ≤ d(u) (where d(·) refers to the distance labels at the start of the iteration) so
any s-t path of length d(t) in the new residual graph would have to be composed exclusively
of advancing edges which existed in the old residual graph. However, any such path must
contain at least one edge which was saturated by the blocking flow, hence deleted from the
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Algorithm 4 BlockingFlow(Gf )

1: h← 0
2: Let G′ be the subgraph composed of advancing edges in Gf .
3: Initialize c′(e) = cf (e) for each edge e in G′.
4: Initialize stack with 〈s〉.
5: repeat
6: Let u be the top vertex on the stack.
7: if u = t then
8: Let P be the path defined by the current stack. // Now augment h using P .
9: Let δ(P ) = min{c′(e) | e ∈ P}.
10: h← h+ δ(P ) · fP .
11: c′(e)← c′(e)− δ(P ) for all e ∈ P .
12: Delete edges with c′(e) = 0 from G′.
13: Let (u, v) be the newly deleted edge that occurs earliest in P .
14: Truncate the stack by popping all vertices above u.
15: else if G′ contains an edge (u, v) then
16: Push v onto the stack.
17: else
18: Delete u and all of its incoming edges from G′.
19: Pop u off of the stack.
20: end if
21: until stack is empty
22: return h

residual graph. Therefore, each loop iteration strictly increases d(t) and the number of loop
iterations is bounded above by n.

The algorithm to compute a blocking flow explores the subgraph composed of advancing
edges in a depth-first manner, repeatedly finding augmenting paths.

The block of code that augments h using P is called at most m times (each time results
in the deletion of at least one edge) and takes O(n) steps each time, so it contributes O(mn)
to the running time of BlockingFlow(Gf ). At most n vertices are pushed onto the stack
before either a path is augmented or a vertex is deleted, so O(mn) time is spent pushing
vertices onto the stack. The total work done initializing G′, as well as the total work done
deleting vertices and their incoming edges, is bounded by O(m). Thus, the total running
time of BlockingFlow(Gf ) is bounded by O(mn), and the running time over Dinitz’s
algorithm overall is bounded by O(mn2).

5 The Push-Relabel Algorithm

In this section we present an algorithm to compute a maximum flow in O(n3) time. Un-
like the algorithms presented in earlier lectures, this one is not based on augmenting paths.
Augmenting-path algorithms maintain a feasible flow at all times and terminate when the
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residual graph has no s − t path. The push-relabel algorithm maintains the invariant that
the residual graph contains no s − t path, and it terminates when it has found a feasible
flow. The state of the algorithm before terminating is described by a more general structure
called a preflow.

Definition 7. A preflow in a flow network G = (V,E, c, s, t) is a function f : V 2 → R that
satisfies

1. skew-symmetry: f(u, v) = −f(v, u) for all u, v ∈ V

2. semi-conservation:
∑

u∈V f(u, v) ≥ 0 for all v 6= s

3. capacity: f(u, v) ≤ c(u, v) for all u, v ∈ V .

The non-negative quantity x(v) =
∑

u∈V f(u, v) is called the excess of v with respect to f .

Note that a preflow is a flow if and only if every vertex except s and t has zero excess.
The preflow-push algorithm works by always pushing flow away from vertices with positive
excess. This is done using an operation Push(v, w) that pushes enough flow on edge (v, w)
to either saturate the edge or remove all of the excess at v. The former case is called a
saturating push, the latter is a push.

Push(v, w):
δ ← min{x(v), r(v, w)}
f(v, w)← f(v, w) + δ
f(w, v)← f(w, v)− δ

Note that the quantity δ in the Push operation is carefully chosen to ensure that if f is
a preflow before performing Push(v, w) then it remains a preflow afterward. This is because
x(v) decreases by δ, hence it cannot become negative, and f(v, w) increases by δ, hence it
cannot exceed f(v, w) + r(v, w) = c(v, w).

To keep track of where and when to push flow in the network, and to ensure that flow is
going toward the sink, the algorithm makes use a height function taking non-negative integer
values. The height function will satisfy the following invariants.

1. boundary conditions: h(s) = n, h(t) = 0;

2. steepness condition: for all edges (v, w) in the residual graph Gf , h(v) ≤ h(w) + 1.

The following two lemmas underscore the importance of the height function invariants.

Lemma 6. If f is a flow, h is a height function satisfying the steepness condition, and
v0, v1, . . . , vk is a path in the residual graph Gf , then h(v0) ≤ h(vk) + k.

Proof. The proof is by induction on k. When k = 0 the lemma holds vacuously. For
k > 0, the induction hypothesis and the steepness condition imply h(v0) ≤ h(v1) + 1 ≤
h(vk) + (k − 1) + 1, and the lemma follows.
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Lemma 7. If f is a flow and h is a height function satisfying the boundary and steepness
conditions, then f is a maximum flow.

Proof. To prove that f is a maximum flow it suffices to prove that Gf has no path from s
to t. Since Gf has only n vertices, every simple path v0, . . . , vk in Gf satisfies k ≤ n− 1 and
hence, by Lemma 6, h(v0) ≤ h(vk) + n − 1. The boundary condition now implies that the
endpoints of the path cannot by s and t.

The following algorithm, known as the push-relabel algorithm, computes a maximum
flow by maintaining a preflow f and height function h satisfying the boundary and steepness
conditions. The flow f is modified by a sequence of Push operations, and the height function
h is modified by a sequence of Relabel operations, each of which increments the height
of a vertex to enable future push operations without risking a violation of the steepness
condition. (To see why Push(v, w) may risk violating the steepness condition, note that it
may introduce a new edge (w, v) into the residual graph. Hence, Push(v, w) should only be
applied when h(v) ≥ h(w)− 1.)

Algorithm 5 Push-Relabel Algorithm

Initialize h(s) = n and h(v) = 0 for all v 6= s.

Initialize f(u, v) =


c(u, v) if u = s

−c(v, u) if v = s

0 otherwise.

Initialize x(s) = 0 and x(v) = c(s, v) for all v 6= s.
while there exists v such that x(v) > 0 do

Pick v of maximum height among the vertices with x(v) > 0.
if there exists w such that r(v, w) > 0 and h(v) > h(w) then

Push(v, w)
else

h(v)← h(v) + 1
end if

end while
return f

By design, the algorithm maintains the invariants that f is a preflow and h satisfies the
boundary and steepness conditions. Hence, if it terminates, by Lemma 7 it must return
a maximum flow. The remainder of the analysis is devoted to proving termination and
bounding the running time. Our first task will be to bound the heights of vertices with
positive excess.

Lemma 8. If f is a preflow and v is a vertex with x(v) > 0, then Gf contains a path from
v to s.

Proof. Let A denote the set of all u such that Gf contains a path from u to s, and let
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B = V \ A. Note that Gf contains no edges from B to A. We have∑
v∈B

x(v) =
∑
v∈B

∑
u∈V

f(u, v)

=
∑
v∈B

∑
u∈A

f(u, v) (All other terms cancel, by skew-symmetry.)

=
∑
v∈B

∑
u∈A

−f(v, u)

≤
∑
v∈B

∑
u∈A

r(v, u) = 0,

which shows that the sum of excesses of the vertices in B is non-positive. Since s 6∈ B and s
is the only vertex that has negative excess, it follows that every vertex in B has zero excess.
In other words, all of the vertices with positive excess belong to A, QED.

Lemma 9. If f is a preflow and h is a height function satisfying the boundary and steepness
conditions, then h(v) ≤ 2n− 1 for all v such that x(v) > 0.

Proof. This follows directly from Lemmas 6 and 8 and the fact that h(s) = n.

It’s time to start bounding the number of operations the algorithm performs.

Relabelings. Since the graph has n vertices and the height of each one never exceeds 2n,
the number of relabel operations is bounded by 2n2.

Saturating pushes. Each time a saturating push occurs on edge (v, w), it is removed
from Gf . Also, note that Push(v, w) is only executed if h(v) > h(w). In order for (v, w)
to reappear as an edge of Gf , it must regain positive residual capacity through application
of the operation Push(w, v). However, in order for Push(w, v) to take place, it must be
the case that the height of w increased to exceed that of v, meaning that w was relabeled
at least twice. Since w is relabeled at most 2n times in total, we conclude that edge (v, w)
experiences at most n saturating pushes. Summing over all m edges of the graph and their
reversals, the algorithm performs at most 2mn saturating pushes.

Non-saturating pushes. This is the hardest part of the analysis. To bound non-saturating
pushes we define

H = max{h(v) | x(v) > 0}

and divide the algorithm’s execution into phases during which H is constant. In other words,
each time the value of H changes, a phase ends and the next phase begins. Now, since H can
only increase when a relabel operation takes place, the total amount by which H increases is
bounded by 2n2. The H starts at 0 and is always non-negative, the total amount by which
H decreases is also at most 2n2. Hence, the number of phases is bounded by 4n2. During
a phase, we claim that each vertex experiences at most one non-saturating push. Indeed,
during a phase we only perform Push(v, w) if h(v) = H and x(v) > 0. If the operation is
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a non-saturating push then x(v) = 0 afterward, and the only way for v to acquire positive
excess is if some other operation Push(u, v) is later performed. However, for Push(u, v) to
be performed we would need to have h(u) = H+1, implying that the next phase has already
begun. Thus, during a phase there can be at most one non-saturating push per node, or n
non-saturating pushes in total. As there are at most 4n2 phases, there can be at most 4n3

non-saturating pushes.

5.1 Epilogue: Faster Algorithms for Maximum Flow

Earlier we presented a simple implementation of Dinitz’s algorithm running in time O(mn2).
Using sophisticated data structures, Sleator and Tarjan discovered a way to implement
Dinitz’s algorithm to run in time O(mn log n). The push-relabel algorithm, presented above,
has a running time of O(n3). The fastest known strongly-polynomial algorithm, due to Orlin,
has a running time of O(mn). There are also weakly polynomial algorithms for maximum
flow in integer-capacitated networks, i.e. algorithms whose running time is polynomial in the
number of vertices and edges, and the logarithm of the largest edge capacity, U . The fastest
such algorithm, discovered in 2022 by Li Chen, Rasmus Kyng, Yang Liu, Richard Peng,
Maximilian Probst Gutenberg, and Sushant Sachdeva, is a randomized algorithm running in
time O(m1+o(1) logU) with high probability. That algorithm combines methods from con-
tinuous optimization (interior point methods) with novel randomized data structures. The
ideas behind its design and analysis lie well beyond the scope of this course.

6 Combinatorial Applications

In combinatorics, there are many examples of “min-max theorems” asserting that the mini-
mum of XXX equals that maximum of YYY, where XXX and YYY are two different combinatorially-
defined parameters related to some object such as a graph. Often these min-max theorems
have two other salient properties.

1. It’s straightforward to see that the maximum of YYY is no greater than the minimum
of XXX, but the fact that they are equal is usually far from obvious, and in some cases
quite surprising.

2. The theorem is accompanied by a polynomial-time algorithm to compute the minimum
of XXX or the maximum of YYY.

Most often, these min-max relations can be derived as consequences of the max-flow min-cut
theorem. (Which is, of course, one example of such a relation.) This also explains where the
accompanying polynomial-time algorithm comes from.

There is a related phenomenon that applies to decision problems, where the question is
whether or not an object has some property P, rather than a question about the maximum or
minimum of some parameter. Once again, we find many theorems in combinatorics asserting
that P holds if and only if Q holds, where:
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1. It’s straightforward to see that Q is necessary in order for P to hold, but the fact that
Q is also sufficient is far from obvious.

2. The theorem is accompanied by a polynomial-time algorithm to decide whether prop-
erty P holds.

Once again, these necessary and sufficient conditions can often be derived from the max-flow
min-cut theorem

The main purpose of this section is to illustrate five examples of this phenomenon. Before
getting to these applications, it’s worth making a few other remarks.

1. The max-flow min-cut theorem is far from being the only source of such min-max
relations. For example, many of the more sophisticated ones are derived from the
Matroid Intersection Theorem, which is a topic that we will not be discussing this
semester.

2. Another prolific source of min-max relations, namely LP Duality, has already been
discussed informally this semester, and we will be coming to a proof later on. LP
duality by itself yields statements about continuous optimization problems, but one
can often derive consequences for discrete problems by applying additional special-
purpose arguments tailored to the problem at hand.

3. The “applications” in these notes belong to mathematics (specifically, combinatorics)
but there are many real-world applications of maximum flow algorithms. See Chap-
ter 7 of Kleinberg & Tardos for applications to airline routing, image segmentation,
determining which baseball teams are still capable of getting into the playoffs, and
many more.

6.1 Menger’s Theorem

As a first application, we consider the problem of maximizing the number of disjoint paths
between two vertices s, t in a graph. Menger’s Theorem equates the maximum number of
such paths with the minimum number of edges or vertices that must be deleted from G in
order to separate s from t.

Definition 8. Let G be a graph, either directed or undirected, with distinguished vertices
s, t. Two s − t paths P, P ′ are edge-disjoint if there is no edge that belongs to both paths.
They are vertex-disjoint if there is no vertex that belongs to both paths, other than s and t.
(This notion is sometimes called internally-disjoint.)

Definition 9. Let G be a graph, either directed or undirected, with distinguished vertices
s, t. An s − t edge cut is a set of edges C such that every s − t path contains an edge of
C. An s− t vertex cut is a set of vertices U , disjoint from {s, t}, such that every s− t path
contains a vertex of U .

Theorem 10 (Menger’s Theorem). Let G be a (directed or undirected) graph and let s, t
be two distinct vertices of G. The maximum number of edge-disjoint s − t paths equals the
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minimum cardinality of an s− t edge cut, and the maximum number of vertex-disjoint s− t
paths equals the minimum cardinality of an s − t vertex cut. Furthermore the maximum
number of disjoint paths can be computed in polynomial time.

Proof. The theorem actually asserts four min-max relations, depending on whether we work
with directed or undirected graphs and whether we work with edge-disjointness or vertex-
disjointness. In all four cases, it is easy to see that the minimum cut constitutes an upper
bound on the maximum number of disjoint paths, since each path must intersect the cut
in a distinct edge/vertex. In all four cases, we will prove the reverse inequality using the
max-flow min-cut theorem.

To prove the results about edge-disjoint paths, we simply make G into a flow network by
defining c(u, v) = 1 for all directed edges (u, v) ∈ E(G); if G is undirected then we simply set
c(u, v) = c(v, u) = 1 for all (u, v) ∈ E(G). The theorem now follows from two claims: (A) an
integer s− t flow of value k implies the existence of k edge-disjoint s− t paths and vice versa;
(B) a cut of capacity k implies the existence of an s− t edge cut of cardinality k and vice-
versa. To prove (A), we can decompose an integer flow f of value k into a set of edge-disjoint
paths by finding one s − t path consisting of edges (u, v) such that f(u, v) = 1, setting the
flow on those edges to zero, and iterating on the remaining flow; the transformation from
k disjoint paths to a flow of value k is even more straightforward. To prove (B), from an
s − t edge cut C of cardinality k we get an s − t cut of capacity k by defining S to be all
the vertices reachable from s without crossing C; the reverse transformation is even more
straightforward.

To prove the results about vertex-disjoint paths, the transformation uses some small “gad-
gets”. Every vertex v in G is transformed into a pair of vertices vin, vout, with c(vin, vout) = 1
and c(vout, vin) = 0. Every edge (u, v) in G is transformed into an edge from uout to vin with
infinite capacity. In the undirected case we also create an edge of infinite capacity from vout
to uin. Now we solve max-flow with source sout and sink tin. As before, we need to establish
two claims: (A) an integer sout− tin flow of value k implies the existence of k vertex-disjoint
s− t paths and vice versa; (B) a cut of capacity k implies the existence of an sout− tin vertex
cut of cardinality k and vice-versa. Claim (A) is established exactly as above. Claim (B) is
established by first noticing that in any finite-capacity cut, the only edges crossing the cut
must be of the form (vin, vout); the set of all such v then constitutes the s− t vertex cut.

6.2 The König-Egervary Theorem

Recall that a matching in a graph is a collection of edges such that each vertex belongs to at
most one edge. A vertex cover of a graph is a vertex set A such that every edge has at least
one endpoint in A. Clearly the cardinality of a maximum matching cannot be greater than
the cardinality of a minimum vertex cover. (Every edge of the matching contains a distinct
element of the vertex cover.) The König-Egervary Theorem asserts that in bipartite graphs,
these two parameters are always equal.

Theorem 11 (König-Egervary). If G is a bipartite graph, the cardinality of a maximum
matching in G equals the cardinality of a minimum vertex cover in G.
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Proof. The proof technique illustrates a very typical way of using network flow algorithms:
we make a bipartite graph into a flow network by attaching a “super-source” to one side and
a “super-sink” to the other side. Specifically, if G is our bipartite graph, with two vertex
sets X, Y , and edge set E, then we define a flow network Ĝ = (X ∪ Y ∪ {s, t}, c, s, t) where
the following edge capacities are nonzero, and all other edge capacities are zero:

c(s, x) = 1 for all x ∈ X
c(y, t) = 1 for all y ∈ Y

c(x, y) =∞ for all (x, y) ∈ E

For any integer flow in this network, the amount of flow on any edge is either 0 or 1. The
set of edges (x, y) such that x ∈ X, y ∈ Y, f(x, y) = 1 constitutes a matching in G whose
cardinality is equal to |f |. Conversely, any matching in G gives rise to a flow in the obvious
way. Thus the maximum flow value equals the maximum matching cardinality.

If (S, T ) is any finite-capacity s − t cut in this network, let A = (X ∩ T ) ∪ (Y ∩ S).
The set A is a vertex cover in G, since an edge (x, y) ∈ E with no endpoint in A would
imply that x ∈ S, y ∈ T, c(x, y) =∞ contradicting the finiteness of c(S, T ). The capacity of
the cut is equal to the number of edges from s to T plus the number of edges from S to t
(no other edges from S to T exist, since they would have infinite capacity), and this sum is
clearly equal to |A|. Conversely, a vertex cover A gives rise to an s − t cut via the reverse
transformation, and the cut capacity is |A|.

6.3 Hall’s Theorem

Theorem 12. Let G be a bipartite graph with vertex sets X, Y and edge set E. Assume
|X| = |Y |. For any W ⊆ X, let Γ(W ) denote the set of all y ∈ Y such that (w, y) ∈ E for at
least one w ∈ W . In order for G to contain a perfect matching, it is necessary and sufficient
that each W ⊆ X satisfies |Γ(W )| ≥ |W |.

Proof. The stated condition is clearly necessary. To prove it is sufficient, assume that
|Γ(W )| ≥ |W | for all W . Transform G into a flow network Ĝ as in the proof of the König-
Egervary Theorem. If there is a integer flow of value |X| in Ĝ, then the edges (x, y) such that
x ∈ X, y ∈ Y, f(x, y) = 1 constitute a perfect matching in G and we are done. Otherwise,
there is a cut (S, T ) of capacity k < n. We know that

|X ∩ T |+ |Y ∩ S| = k < n = |X ∩ T |+ |X ∩ S|

from which it follows that |Y ∩ S| < |X ∩ S|. Let W = X ∩ S. The set Γ(W ) is contained
in Y ∩ S, as otherwise there would be an infinite-capacity edge crossing from S to T . Thus,
|Γ(W )| ≤ |Y ∩S| < |W |, and we verified that when a perfect matching does not exist, there
is a set W violating Hall’s criterion.

6.4 Dilworth’s Theorem

In a directed acyclic graph G, let us say that a pair of vertices v, w are incomparable if there
is no path passing through both v and w, and define an antichain to be a set of pairwise
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incomparable vertices.

Theorem 13. In any finite directed acyclic graph G, the maximum cardinality of an an-
tichain equals the minimum number of paths required to cover the vertex set of G.

The proof is much trickier than the others. Before presenting it, it is helpful to introduce
a directed graph G∗ called the transitive closure of G. This has same vertex set V , and its
edge set E∗ consists of all ordered pairs (v, w) such that v 6= w and there exists a path in
G from v to w. Some basic facts about the transitive closure are detailed in the following
lemma.

Lemma 14. If G is a directed acyclic graph, then its transitive closure G∗ is also acyclic. A
vertex set A constitutes an independent set in G∗ (i.e. no edge in E∗ has both endpoints in
S) if and only if A is an antichain in G. A sequence of vertices v0, v1, . . . , vk constitutes a
path in G∗ if and only if it is a subsequence of a path in G. For all k, G∗ can be partitioned
into k or fewer paths if and only if G can be covered by k or fewer paths.

Proof. The equivalence of antichains in G and independent sets in G∗ is a direct consequence
of the definitions. If v0, . . . , vk is a directed walk in G∗ — i.e., a sequence of vertices such
that (vi−1, vi) is an edge for each i = 1, . . . , k — then there exist paths Pi from vi−1 to vi
in G, for each i. The concatenation of these paths is a directed walk in G, which must be
a simple path (no repeated vertices) since G is acyclic. This establishes that v0, . . . , vk is
a subsequence of a path in G, as claimed, and it also establishes that v0 6= vk, hence G∗

contains no directed cycles, as claimed. Finally, if G∗ is partitioned into k paths then we
may apply this construction to each of them, obtaining k paths that cover G. Conversely,
given k paths P1, . . . , Pk that cover G, then G∗ can be partitioned into paths P ∗1 , . . . , P

∗
k

where P ∗i is the subsequence of Pi consisting of all vertices that do not belong to the union
of P1, . . . , Pi−1.

Using these facts about the transitive closure, we may now prove Dilworth’s Theorem.

Proof of Theorem 13. Define a flow network Ĝ = (W, c, s, t) as follows. The vertex set W
contains two special vertices s, t as well as two vertices xv, yv for every vertex v ∈ V (G). The
following edge capacities are nonzero, and all other edge capacities are zero.

c(s, xv) = 1 for all v ∈ V
c(xv, yw) =∞ for all (v, w) ∈ E∗

c(yw, t) = 1 for all w ∈ V

For any integer flow in the network, the amount of flow on any edge is either 0 or 1. Let
F denote the set of edges (v, w) ∈ E∗ such that f(xv, yw) = 1. The capacity and flow
conservation constraints enforce some degree constraints on F : every vertex of G∗ has at
most one incoming edge and at most one outgoing edge in F . In other words, F is a union
of disjoint paths and cycles. However, since G∗ is acyclic, F is simply a union of disjoint
paths in G∗. In fact, if a vertex doesn’t belong to any edge in F , we will describe it as a
path of length 0 and in this way we can regard F as a partition of the vertices of G∗ into
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paths. Conversely, every partition of the vertices of G∗ into paths translates into a flow in
Ĝ in the obvious way: for every edge (v, w) belonging to one of the paths in the partition,
send one unit of flow on each of the edges (s, xv), (xv, yw), (yw, t).

The value of f equals the number of edges in F . Since F is a disjoint union of paths,
and the number of vertices in a path always exceeds the number of edges by 1, we know that
n = |F |+ p(F ), where p(F ) denotes the number of paths in F . Thus, if the maximum flow
value in Ĝ equals k, then the minimum number of paths in a path-partition of G∗ equals
n−k, and Lemma 14 shows that this is also the minimum number of paths in a path-covering
of G. By max-flow min-cut, we also know that the minimum cut capacity in Ĝ equals k, so
to finish the proof, we must show that an s− t cut of capacity k in Ĝ implies an antichain
in G — or equivalently (again using Lemma 14) an independent set in G∗ — of cardinality
n− k.

Let S, T be an s− t cut of capacity k in Ĝ. Define a set of vertices A in G∗ by specifying
that v ∈ A if xv ∈ S and yv ∈ T . If a vertex v does not belong to A then at least one of
the edges (s, xv) or (yv, t) crosses from S to T , and hence there are at most k such vertices.
Thus |A| ≥ n−k. Furthermore, there is no edge in G∗ between elements of A: if (v, w) were
any such edge, then (xv, yw) would be an infinite-capacity edge of Ĝ crossing from S to T .
Hence there is no path in G between any two elements of A, i.e. A is an antichain.
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