Cornell University, Fall 2017 CS 6820: Algorithms
Lecture notes: Online bipartite matching algorithms 6—8 Sept

In practice when designing algorithms, it is often the case that the input is a stream of data
arriving over a span of time, and the algorithm needs to make decisions in real-time, before
the entire input stream has been observed. This is the subject of online algorithms. In these
lecture notes we explore a specific and archetypical example in the design and analysis of online
algorithms: the online bipartite matching problem.

In the online bipartite matching problem, there is a bipartite graph G = (V, E) whose vertex
set V' is partitioned into two sides L, R, known as the left and right or offline and online sides;
every edge of G has one endpoint in L and the other endpoint in R. The contents of the set
L are known to the algorithm at initialization time (¢ = 0), whereas the remaining information
about G is revealed at times ¢t = 1,2,...,n = |R|, by exposing one vertex of R at each time step.
When vertex j € R arrives, all of its incident edges are revealed. The algorithm is then allowed
to take one of the following actions: select one of the edges (i, j) that was revealed in the current
step; or do nothing. The set of selected edges is required to be a matching; thus, if vertex ¢ € L
belongs to a previously selected edge, then (i,j) may not be selected in the current time step.
The algorithm’s objective is to maximize the number of edges selected.

A variation of this problem is the online bipartite fractional matching problem, in which the
input sequence is the same, but the algorithm’s output at time j is a tuple of numbers (z;;);er
satisfying:

o z;; =0 when (i,7) € E.

® Dier i < 1.

e forallie L,) . _px; <1

jER
In other words, the matrix of values () jicrxr eventually computed by the algorithm must
belong to the fractional matching polytope of G. Fractional matching is of interest as a problem
in its own right, and also as a window into the design of randomized online bipartite matching
algorithms. From any such randomized algorithm, one can define a corresponding deterministic
online fractional bipartite matching algorithm, obtained by setting x;; to be the unconditional
probability that the online algorithm selects edge (i, 7). (Note that this unconditional probability
can be computed at the time when vertex j arrives — i.e., it does not depend on any information
to be revealed in the future — which is the reason why the fractional matching algorithm is a
valid online algorithm.) Note that there is no obvious way to invert this transformation; in other
words, given a deterministic fractional online matching algorithm, there is no obvious way to
obtain a randomized online matching algorithm whose expected behavior yields the designated
fractional algorithm.

1 A lower bound

What should we hope to achieve in an online bipartite matching algorithm? If we are unreason-
ably optimistic, we might hope to design an algorithm that is guaranteed to output a maximum
cardinality matching. The following example shows that this is hopeless. Suppose L = {iy,is}
and R = {j1,72}. Consider two possible input sequences. In both of them, vertex j; arrives at

time t = 1 and reveals that it is connected to both i; and 75. At time ¢t = 2, vertex j, arrives
and reveals that it has only one neighbor: in Input 1 this neighbor is ¢;; in Input 2 it is 5.

Notice that the maximum matching has size 2 in both of these inputs: js can be matched to
its only neighbor, whereas j; can be matched to the remaining element of L. Also notice that in
both cases, this is the unique matching of size 2. Therefore, an online algorithm that seeks to
select the maximum matching faces an insurmountable predicament: at time ¢t = 1 it must match
j1 to one of its neighbors, there is a unique choice that is consistent with picking the maximum
matching, and there is no way to know which choice this is until time ¢ = 2. Thus, for every
deterministic online algorithm, we can find an input instance that causes the algorithm to select
a matching of size at most 1, while the maximum matching has size 2.

One can place this impossibility result in the broader context of competitive analysis of online
algorithms, which evaluates algorithms according to the following criterion.

Definition 1. An online algorithm for a maximization problem is c-competitive if there exists
a constant b such that for all input sequences,

c-ALG +b > OPT,

where ALG and OPT denote the values of the algorithm’s solution and the optimum one, re-
spectively. It is strictly c-competitive if b = 0 in the above bound. A randomized algorithm is
c-competitive (against an oblivious adversary) if the above holds with E[ALG]| in place of ALG.

Our analysis of the two four-vertex input sequences above implies that deterministic online
matching algorithms cannot be strictly c-competitive for any ¢ < 2. By considering inputs
comprising an arbitrarily long sequence of disjoint copies of either Input 1 or Input 2, we can
eliminate the word “strictly” and conclude that deterministic algorithms cannot be c-competitive
for any ¢ < 2.

Our above discussion of the relationship between randomized and fractional algorithms shows
that a lower bound on the competitive ratio of deterministic fractional online algorithms implies
the same lower bound on the competitive ratio of randomized online algorithms. In particular,
the competitive ratio of fractional (and hence randomized) online matching algorithms can be
bounded below by 4/3, by an easy analysis of the same set of input sequences that furnished the
lower bound of 2 for deterministic algorithms.

2 The greedy algorithm

It turns out that the example presented in Section 1 is the worst possible for deterministic
algorithms, from the standpoint of competitive analysis. There is a strictly 2-competitive de-
terministic online algorithm. In fact, a competitive ratio of 2 is achieved by the most naive
algorithm: the greedy algorithm that matches each new vertex j to an arbitrary unmatched
neighbor, i, whenever an unmatched neighbor exists. This fact follows directly from two simple
lemmas.

Lemma 1. Let G be any graph, M* a mazimum matching in G, and M a maximal matching in
G (i.e., one that is not a proper subset of any other matching). The cardinalities of M and M*
satisfy 2| M| > |M*|.

Proof. Construct a function f from M* to M as follows. For every edge e in M*, define f(e) to
be any edge in M that has an endpoint in common with e. There must be at least one such edge

in M, because otherwise M U {e} would be a matching, contradicting our hypothesis that M is
maximal. For every edge ¢/ = (i,7) € M, the set f~!(¢/) has at most two elements. (At most
one with endpoint i, and at most one with endpoint j.) The inequality 2|M| > |M*| follows
immediately. O

Lemma 2. The greedy online bipartite matching algorithm always selects a maximal matching

mn G.

Proof. Let M denote the matching selected by the greedy algorithm. For every edge e = (i, j)
that does not belong to M, consider the time step in which vertex j arrived. Either ;7 was
matched to a vertex other than ¢ at that time, or 7 was not matched to any vertex because all
of its neighbors (including ¢) were already matched in M. In both cases, M contains an edge
having either i or j as an endpoint, and therefore M U {e} is not a matching. O

3 Online fractional matching: the waterfilling algorithm

It turns out that online fractional matching algorithms can achieve competitive ratios significantly
better than 2, as we will see in this section.

First, a useful bit of terminology: we will refer to the sum) jer Tij as the fractional degree
of vertex 7 in fractional matching x. For a vertex j € R the fractional degree is defined similarly.

Perhaps the most natural idea for online fractional matching is to have each vertex j balance
load equally among its neighbors. In other words, if a new vertex j arrives and has d neighbors,
then for each neighbor i we set the value of x;; to be 1/d, unless that would violate the degree
constraint of vertex i (the constraint that ;Tij < 1) in which case we merely increase x;; as
much as possible given the degree constraint.

However, this “stateless balancing” algorithm fails to be better than 2-competitive. To con-
struct a counterexample, we take the example form Section 1 and blow up each vertex into n
vertices, carefully modifying the edge set to cause the algorithm to make catastrophic decisions.
The set L now has 2n vertices, which we will label as aq,as,...,a,,b1,bs,...,b,, and the set
R has 2n vertices labeled ci, ¢, ..., ¢,,di, do, ..., d,. Each vertex c¢; has n + 1 neighbors: it is
connected to a; and also to by, by, ..., b,. Each vertex d; has only one neighbor, namely b;. The
maximum matching in this graph has size 2n: it matches (a;, ¢;) and (b;,d;) for i = 1,... n. If
the vertices c¢q,...,c,,dq,...,d, arrive in that order, the stateless balancing algorithm will first
assign a value of n+r1 to each edge incident to ci,...,c,. Thus, when dy,...,d, start arriving,
each of them has a unique neighbor and the fractional degree of that neighbor is already ;% so
d; can contribute only n+r1 additional units to the size of the fractional matching. Thus, when
the algorithm is finished processing the entire graph, the total size of its fractional matching is
n + .27, only slightly more than half of the optimum.

What went wrong in this algorithm? The vertices by,...,b, are more “highly demanded”
than aq,...,a, and it was unwise for vertices cy,..., ¢, to use up almost all of the capacity of
by, ...,b, while using almost none of ay,...,a,. The first vertex, ¢;, can be forgiven for making
this mistake since all of its neighbors looked indistinguishable when it arrived. But later on,
we should have known better: we had already seen that the capacities of by, ..., b, were being
depleted and should have taken measures to conserve that capacity. In short, there was nothing
evidently wrong with the load-balancing idea, but it was silly to do stateless load-balancing;
instead, we should have kept track of the current state (the amount of load already placed on
each vertex in L) and adjusted our load-balancing decisions to correct for imbalances in the
current load vector.

This bring us to the waterfilling algorithm. It keeps track of a “water level” for each ¢ € L
representing the current fractional degree d(i) = }_; x;;, summing over all vertices j € R that
have arrived in the past. When a new vertex j arrives, it allocates its one unit of fractional degree
among its neighbors by finding the neighbors with the lowest water level and continuously raising
their water level until either one unit of water has been poured into the graph, or the water level
of all neighbors reaches 1, whichever comes first. In less metaphorical terms, the algorithm finds
the unique number ¢(5) such that

> max{{(j),d(i)} = 1 + Z d(i

1EN(H) 1EN(j

where N (j) represents the set of all neighbors of j. It then sets

((5) = min{{(5), 1}
zy; = max{{(j),d(i)} —d(i) V(i,j)€FE

and it updates d(i) to d(i) + x;; for all 4.
We will analyze the waterfilling algorithm using the primal-dual method. This means that
we’ll use the fractional matching LP

max Zi,j Lij
s.t. 2 x; <1 Vi
Z x; <1 Vj
;>0 Vi, j

and its dual
min >oiait Zj B
s.t. o; + Bj >1 \V/(’L,j) el
a;, ;>0 Vi,j

In particular, we define a dual solution («;)icr, (8j)jecr by specifying that

= g(d(z)) Vi (1)

5 =1-g({()) Vj, (2)
where v_1
9(y) = ee 1

The choice of this specific function g will make more sense later in the analysis. The vital
properties of g that are needed in the analysis are:

1. ¢ is an increasing function.

2. 9(0)=0

3. g(1) =1

4. 1—g(t)+4g'(t) = 5 forall t.

First, let’s observe that the dual solution defined by (1)-(2) is feasible. This is because at the
time we finish processing vertex j, the inequality d(i) > £(j) is satisfied by all neighboring vertices
i. Since the value d(7) will not subsequently decrease, we also have d(i) > ¢(j) at termination.
Furthermore, since ¢ is an increasing function, we have

ai + B = g(d(i)) + 1 = g(€(j)) = g(€(5)) +1 = g((5)) = 1,

which verifies dual feasibility.
We claim that the fractional matching and the dual solution computed by our algorithm

satisfy .
P Z xz‘jZZOémLZﬁj- (3)

(i,5)eE i€L JER

By the weak duality, the sum on the right side is an upper bound on the size of any fractional

matching in G, and therefore (3) implies that the waterfilling algorithm is (=%)-competitive.
To prove (3), we compare 3; with a parameter 3; defined as follows. For ¢ € [0, 1] let n;(t)
denote the number of edges (7, j) € E such that the inequality d(i) <t held at the time when j

arrived. Note that ,
£(4)
0

provided that ¢(j) < 1, because in that case vertex j contributed one unit of “water” and the
integrand denotes the rate at which water was filling the system as we increased the water level

¢ from t to t + dt. Now, define
) £(7)
g= [gy md
0

The inequality 3; > 3; always holds: when £(j) = 1 this is because 3; = 0, and when £(j) < 1 it
is because 1 — g(t) is a decreasing function of ¢ and therefore

£(4) £(4)
/0 (1— () - ny(t)dt > (1 - g(0(j)) - / ny(t)dt = 1— g(((7)) = ;.

Letting d(i) denote the degree of a vertex i € L before the arrival of vertex j, the amount by
which the dual objective increases when processing j is:

£(5)
g+ 3 o @@ =1-gtG)+ ¥ / J(t) dt

iEN() ien(j) Y4
)

:e—l Z iy

1EN(j

hence the increase in the dual objective is at most —% times the increase in the primal objective.
Since the primal and dual objectives both start out at zero, this means that the dual objective at

termination is at most —% times the primal objective, certifying inequality (3) and completing

the proof that the Waterﬁlhng algorithm is (6_—1) -competitive.

4 Randomized online matching: The RANKING algorithm

(Most of this section is an excerpt from the paper “Randomized Primal-Dual Analysis of RANKING
for Online Bipartite Matching” by N. Devanur, K. Jain, and R. Kleinberg, 2012.)

Given an online fractional matching algorithm, it is tempting to try constructing a randomized
online matching algorithm whose probability of choosing edge (i,7) is equal to the value z;;
computed by the fractional matching algorithm. If such a transformation were possible, it would
yield a randomized online matching algorithm whose competitive ratio is exactly the same as
that of the given fractional matching algorithm. Unfortunately, such a transformation is not
possible in general. (For example, there is no randomized matching algorithm whose probability
of selecting each edge (i, 7) is exactly equal to the value assigned to that edge by the waterfilling
algorithm. It is quite instructive to try proving this.)

However, there is a randomized online matching algorithm, known as RANKING, that achieves
exactly the same competitive ratio as the waterfilling algorithm, namely —%. Problem (1c) on
this week’s homework asks you to prove that RANKING achieves the best possible competitive
ratio for randomized online matching algorithms.

The RANKING algorithm is actually very easy to describe: at initialization time, it samples a
uniformly random total ordering of the vertices in L. Subsequently, as each vertex j € R arrives,
if 7 has an unmatched neighbor in L then we choose the unmatched neighbor ¢ that comes earliest
in the random ordering, and we add (7, j) to the matching.

To analyze the RANKING algorithm, we begin with a reinterpretation of the algorithm in a
way that is conducive to our analysis. Instead of picking a random total ordering of the vertices
in L, each vertex in L picks a random number in [0, 1] and a vertex j € R, upon its arrival, is
assigned to the unmatched neighbor who picked the lowest number. The algorithm is presented
as Algorithm 1 below.

Algorithm 1: The RANKING algorithm.

foreach i € L. do
| Pick Y; € [0, 1] uniformly at random
foreach j € R do
When j arrives, let N(j) denote the set of unmatched neighbors of j;
if N(j) =0 then
| j remains unmatched

else
| Match j to argmin{Y; : i € N(j)}

To analyze the algorithm, we note the standard LP relaxation for matching and its dual.

maximize g xi; s.t. minimizeg o; + E Bj s.t.

(i,9)EE €L JER
VieV, Y ay;<l Y (i,j) € E,o; 4 B; > 1.
j:(4,5)EE
\V/(Z,])GE,ZL‘”ZO ‘v’i,j,ai,ﬂjZO.

Our analysis constructs a dual solution which is also randomized. The dual variables we
construct may not always be feasible; in other words, they may violate the constraint a; +3; > 1

for some edges (7, j). However, the expected values of the dual variables will constitute a feasible
dual solution. The competitive ratio of % will follow from the fact that the value of the dual
solution is always —% times the size of the matching found, and that the expectation of the
dual variables constitutes a feasible dual solution (whose value, of course, is also -4 times the
expected size of the matching found).

Our construction of the duals depends on a monotone non-decreasing function h that is closely
related to the function g that came up in the analysis of the waterfilling algorithm in Section 3.
The formula for h is h(y) = ¢¥~! and its relevant properties are:

1. h is an increasing function;

2. h(1) =1;

3. V0 €[0,1] [h(y)dy +1—h(d) = =2,

Note the similarity between the integral equation in property 3 of h and the differential equation
in property 4 of the function g in Section 3; note also, however, that if we differentiate both sides
of the integral equation defining h we certainly don’t get the differential equation defining g.

Whenever ¢ is matched to j, let

a; =S -hYi), Bi=5 - (1=h(Y))
For all unmatched 7 and j, set o; = 3; = 0. It will be useful to interpret the algorithm as follows:
on matching ¢ to j, we generate a value of 1 for the primal, which translates to a value of =
for the dual. Each unmatched vertex i € L that is a neighbor of j offers % - (1 — h(Y;)) of this
value to j (to be assigned to f3;), while keeping the rest to itself (to be assigned to «;). Then j
is matched to the vertex that makes the highest offer.

Before we show that the expectation of the duals is feasible, we need certain properties of
the algorithm specified by the following two lemmas. Let (i,j) € E be any edge in the graph.
Consider an instance of the algorithm on G\ {i}, with the same choice of Y for all other i’ € L.
Let y¢ be the value of Yy for the ¢’ that is matched to j. Define ¢ to be 1 if j is not matched.
Let (3 be the value of 3; in this run, i.e. 35 = —% - (1 — h(y°)).

Lemma 3 (Dominance Lemma). Given Y for all other i’ € L, i gets matched if Y; < y°.

Proof. Suppose @ is not matched when j arrives. This means that the run of the algorithm until
then is identical to the run without 7. From the definition of ¢, in the run without ¢, 7 is matched
to ¢ such that Y, = y°. Since Y; < ¢, j is matched to 1. O

Lemma 4 (Monotonicity Lemma). Given Yy for all other i’ € L, for all choices of Yi, B; > 5.

Proof. Consider executing the algorithm on graphs G and G\ {i} in parallel. At the start of every
step of the two parallel executions, the unmatched vertices in L for the G execution constitute a
superset of the unmatched vertices in L for the G\ {i} execution. This statement is easily proven
by induction: given that it holds at the start of one step, the only way it could be violated at
the start of the next step is if the G execution chooses a vertex i € L that is also unmatched,
but is not chosen, in the G \ {i} execution. Instead the G \ {i} execution must choose some
other vertex " such that Y;» < Y. By our induction hypothesis i was also unmatched in the G
execution, contradicting the fact that the algorithm chose i’ instead.

When node j arrives, its unmatched neighbors in the G execution form a superset of its
unmatched neighbors in the G\ {i} execution, so in the both executions j has an unmatched
neighbor whose Y-value is y¢. If the algorithm instead chooses another neighbor of j, its Y-value
can be at most y° and hence, by the monotonicity of i, we have §; > 35. n

We now show that the above properties of i imply a competitive ratio of -4 for RANKING.
Lemma 5. RANKING is _ -competitive.

Proof. Whenever i is matched to j, a; + ; = == . Therefore the ratio of the dual solution to the

primal is always —=. We show that the dual is feasible in expectation. In particular, we show

that for all (7, 5) € E,
Ey;lai + 6] = 1

for all choices of Yy for all i # ¢ € L. By the Dominance Lemma (Lemma 3) ¢ is matched
whenever Y; < y°. Hence

c

Ey,o] > — / hy) dy.

e—1
By the Monotonicity Lemma (Lemma 4), 8; > 5 = -5 - (1 — h(y®)) for all choices of Y;. The

T e—1
lemma now follows from the integral equation listed above as property 3 of h. O

