Cornell University, Fall 2017 CS 6820: Algorithms
Lecture notes: Matchings 23 Aug-1 Sep

These notes analyze algorithms for optimization problems involving matchings in bipar-
tite graphs. Matching algorithms are not only useful in their own right (e.g., for matching
clients to servers in a network, or buyers to sellers in a market) but also furnish a concrete
starting point for learning many of the recurring themes in the theory of graph algorithms
and algorithms in general. Examples of such themes are augmenting paths, linear program-
ming relaxations, and primal-dual algorithm design.

1 Bipartite maximum matching

In this section we introduce the bipartite maximum matching problem, present a naive
algorithm with O(mn) running time, and then present and analyze an algorithm due to
Hopcroft and Karp that improves the running time to O(m+/n).

1.1 Definitions

Definition 1. A bipartite graph is a graph whose vertex set is partitioned into two disjoint
sets L, R such that each edge has one endpoint in L and the other endpoint in R. When we
write a bipartite graph G as an ordered triple G = (L, R, E), it means that L and R are the
two vertex sets (called the left set and right set, respectively) and FE is the edge set.

Definition 2. A matching in an undirected graph is a set of edges such that no vertex
belongs to more than element of the set.

The bipartite maximum matching problem is the problem of computing a matching of
maximum cardinality in a bipartite graph.

We will assume that the input to the bipartite maximum matching problem, G =
(L, R, E), is given in its adjacency list representation, and that the bipartition of G—that
is, the partition of the vertex set into L and R—is given as part of the input to the problem.

Exercise 1. Prove that if the bipartition is not given as part of the input, it can be con-
structed from the adjacency list representation of G in linear time.

(Here and elsewhere in the lecture notes for CS 6820, we will present exercises that may
improve your understanding. You are encouraged to attempt to solve these exercises, but
they are not homework problems and we will make no effort to check if you have solved
them, much less grade your solutions.)

1.2 Alternating paths and cycles; augmenting paths

The following sequence of definitions builds up to the notion of an augmenting path, which
plays a central role in the design of algorithms for the bipartite maximum matching problem.

Definition 3. If G is a graph and M is a matching in G, a vertex is called matched if it
belongs to one of the edges in M, and free otherwise.

An alternating component with respect to M (also called an M -alternating component)
is an edge set that forms a connected subgraph of G of maximum degree 2 (i.e., a path or
cycle), in which every degree-2 vertex belongs to exactly one edge of M. An augmenting path
with respect to M is an M-alternating component which is a path both of whose endpoints
are free vertices.

In the following lemma, and throughout these notes, we use the notation A® B to denote
the symmetric difference of two sets A and B, i.e. the set of all elements that belong to one
of the sets but not the other.

Lemma 1. If M is a matching and P is an augmenting path with respect to M, then M & P
1s a matching containing one more edge than M.

Proof. P has an odd number of edges, and its edges alternate between belonging to M and
its complement, starting and ending with the latter. Therefore, M & P has one more edge
than M. To see that it is a matching, note that vertices in the complement of P have the
same set of neighbors in M as in M @ P, and vertices in P have exactly one neighbor in
Mo P. O

Lemma 2. A matching M in a graph G is a mazimum cardinality matching if and only if
it has no augmenting path.

Proof. We have seen in that if M has an augmenting path, then it does not have
maximum cardinality, so we need only prove the converse. Suppose that M* is a matching
of maximum cardinality and that |M| < |M*|. The edge set M & M* has maximum degree
2, and each vertex of degree 2 in M & M™* belongs to exactly one edge of M. Therefore
each connected component of M @ M* is an M-alternating component. At least one such
component must contain more edges of M* than of M. It cannot be an alternating cycle
or an even-length alternating path; these have an equal number of edges of M* and M. It
also cannot be an odd-length alternating path that starts and ends in M. Therefore it must
be an odd-length alternating path that starts and ends in M*. Since both endpoints of this
path are free with respect to M, it is an M-augmenting path as desired. O

1.3 Bipartite maximum matching: Naive algorithm

The foregoing discussion suggests the following general scheme for designing a bipartite
maximum matching algorithm.

Algorithm 1 Naive iterative scheme for computing a maximum matching
. Initialize M = 0.
repeat
Find an augmenting path P with respect to M.
M~ MoP
until there is no augmenting with respect to M.

By [Lemma 1] the invariant that M is a matching is preserved at the end of each loop
iteration. Furthermore, each loop iteration increases the cardinality of M by 1, and the
cardinality cannot exceed n/2, where n is the number of vertices of G. Therefore, the
algorithm terminates after at most n/2 iterations. When it terminates, M is guaranteed to

be a maximum matching by [Lemma 2|

The algorithm is not yet fully specified because we have not indicated the procedure for
finding an augmenting path with respect to M. When G is a bipartite graph, there is a
simple linear-time procedure that we now describe.

Definition 4. If G = (L, R, E) is a bipartite graph and M is a matching, the graph D(G, M)
is the directed graph formed from G by orienting each edge from L to R if it does not belong
to M, and from R to L otherwise.

Lemma 3. Suppose M is a matching in a bipartite graph G, and let F' denote the set of
free vertices. M -augmenting paths are in one-to-one correspondence with directed paths from

LNF to RNF in D(G, M).

Proof. If P is a directed path from L N F to RN F in D(G, M) then P starts and ends at
free vertices, and its edges alternate between those that are directed from L to R (which are
in the complement of M) and those that are directed from R to L (which are in M), so the
undirected edge set corresponding to P is an augmenting path.

Conversely, if P is an augmenting path, then each vertex in the interior of P belongs to
exactly one edge of M, so when we orient the edges of P as in D(G, M) each vertex in the
interior of P has exactly one incoming and one outgoing edge, i.e. P becomes a directed path.
This path has an odd number of edges so it has one endpoint in L and the other endpoint
in R. Both of these endpoints belong to F', by the definition of augmenting paths. Thus,
the directed edge set corresponding to P is a path in D(G, M) from LN F to RN F. O

implies that in each loop iteration of [Algorithm 1] the step that requires

finding an augmenting path (if one exists) can be implemented by building the auxiliary
graph D(G, M) and running a graph search algorithm such as BFS or DFS to search for a
path from LN F to RN F. Building D(G, M) takes O(m + n) time, where m is the number
of edges in G, as does searching D(G, M) using BFS or DFS. For convenience, assume
m > n/2; otherwise G contains isolated vertices which may be eliminated in a preprocessing

step requiring only O(n) time. Then [Algorithm 1| runs for at most n/2 iterations, each
requiring O(m) time, so its running time is O(mn).

Remark 1. When G is not bipartite, our analysis of still proves that it finds a
maximum matching after at most n/2 iterations. However, the task of finding an augmenting
path, if one exists, is much more subtle. The first polynomial-time algorithm for finding an
augmenting path was discovered by Jack Edmonds in a 1965 paper entitled “Paths, Trees,
and Flowers” that is one of the most influential papers in the history of combinatorial
optimization. Edmonds’ algorithm finds an augmenting path in O(mn) time, leading to a
running time of O(mn?) for finding a maximum matching in a non-bipartite graph. Faster
algorithms have subsequently been discovered.

1.4 The Hopcroft-Karp algorithm

One potentially wasteful aspeect of the naive algorithm for bipartite maximum matching
is that it chooses one augmenting path in each iteration, even if it finds many augmenting
paths in the process of searching the auxiliary graph D(G, M). The Hopcroft-Karp algorithm
improves the running time of the naive algorithm by correcting this wasteful aspect; in each
iteration it attempts to find many disjoint augmenting paths, and it uses all of them to
increase the size of M.

The following definition specifies the type of structure that the algorithm searches for in
each iteration.

Definition 5. If GG is a graph and M is a maximum matching, a blocking set of augmenting
paths with respect to M is a set {Py, ..., Py} of augmenting paths such that:

1. the paths Py, ..., P, are vertex disjoint;

2. they all have the same length, /;

3. (is the minimum length of an M-augmenting path;

4. every augmenting path of length ¢ has at least one vertex in common with Py U- - -U P.

In other words, a blocking set of augmenting paths is a (setwise) maximal collection of
vertex-disjoint minimum-length augmenting paths.

The following lemma generalizes and its proof is a direct generalization of the
proof of that lemma.

Lemma 4. If M is a matching and { Py, ..., Py} is any set of vertex-disjoint M -augmenting
paths then M & Py @ Py @ - - - & Py, is a matching of cardinality |M| + k.

Generalizing we have the following.

Lemma 5. Suppose G is a graph, M is a matching in G, and M* is a mazimum matching;
let k = |M*| —|M]|. The edge set M & M* contains at least k vertez-disjoint M -augmenting
paths. Consequently, G has at least one M-augmenting path of length less than n/k, where
n denotes the number of vertices of G.

Proof. The edge set M & M* has maximum degree 2, and each vertex of degree 2 in M & M*
belongs to exactly one edge of M. Therefore each connected component of M @& M* is an
M-alternating component. Each M-alternating component which is not an augmenting path
has at least as many edges in M as in M*. Each M-augmenting path has exactly one fewer
edge in M as in M*. Therefore, at least k of the connected components of M & M* must
be M-augmenting paths, and they are all vertex-disjoint. To prove the final sentence of the
lemma, note that G has only n vertices, so it cannot have k disjoint subgraphs each with
more than n/k vertices. O

These lemmas suggest the following method for finding a maximum matching in a graph,
which constitutes the outer loop of the Hopcroft-Karp algorithm.

Algorithm 2 Hopcroft-Karp algorithm, outer loop
1: M =10
2: repeat
3: Let {P,..., Py} be a blocking set of augmenting paths with respect to M.
4
5

M—MoP&P® - &P
. until there is no augmenting path with respect to M

The key to the improved running-time guarantee is the following pair of lemmas which
culminate in an improved bound on the number of outer-loop iterations.

Lemma 6. The minimum length of an M -augmenting path strictly increases after each
iteration of the Hopcroft-Karp outer loop in which a non-empty blocking set of augmenting
paths is found.

Proof. We will use the following notation.

M = matching at the start of one loop iteration
Py, ..., P, = blocking set of augmenting paths found

Q=P U---UP,
R=FE\Q

M' = M & Q = matching at the end of the iteration

F = {vertices that are free with respect to M}

F' = {vertices that are free with respect to M’}

d(v) = length of shortest path in D(G, M) from LN F to v
(If no such path exists, d(v) = c0.)

If (z,y) is any edge of D(G, M) then d(y) < d(z) + 1. Edges of D(G, M) that satisfy
d(y) = d(z) + 1 will be called advancing edges, and all other edges will be called retreating
edges. Note that a shortest path in D(G, M) from L N F to any vertex v must be formed
entirely from advancing edges. In particular, () is contained in the set of advancing edges.

In the edge set of D(G,M’), the orientation of every edge in @ is reversed and the
orientation of every edge in R is preserved. Therefore, D(G, M') has three types of directed
edges (z,y):

1. reversed edges of @, which satisfy d(y) = d(z) — 1;

2. advancing edges of R, which satisfy d(y) = d(z) + 1;

3. retreating edges of R, with satisfy d(y) < d(z).

Note that in all three cases, the inequality d(y) < d(x) + 1 is satisfied.

Now let ¢ denote the minimum length of an augmenting path with respect to M, i.e.
¢ = min{d(v) | v € RN F}. Let P be any path in D(G, M’) from LN F’ to RN F’. The
lemma asserts that P has at least ¢ edges. The endpoints of P are free in M’, hence also
in M. As w ranges over the vertices of P, the value d(w) increases from 0 to at least ¢,
and each edge of P increases the value of d(w) by at most 1. Therefore P has at least ¢

edges, and the only way that it can have ¢ edges is if d(y) = d(x) + 1 for each edge (z,y)
of P. We have seen that this implies that P is contained in the set of advancing edges of
R, and in particular P is edge-disjoint from (). It cannot be vertex-disjoint from () because
then {P,..., Py, P} would be a set of k + 1 vertex-disjoint minimum-length M-augmenting
paths, violating our assumption that {Py, ..., P,} is a blocking set. Therefore P has at least
one vertex in common with Py, ..., P, i.e. PN Q # (. The endpoints of P cannot belong
to @, because they are free in M’ whereas every vertex in () is matched in M’. Let w be a
vertex in the interior of P which belongs to). The edge of M’ containing w belongs to P,
but it also belongs to (). This violates our earlier conclusion that P is edge-disjoint from @),
yielding the desired contradiction. O]

Lemma 7. The Hopcroft-Karp algorithm terminates after fewer than 2+/n iterations of its
outer loop.

Proof. After the first \/n iterations of the outer loop are complete, the minimum length of
an M-augmenting path is greater than \/n. This implies, by [Lemma 5| that [M*| — |M| <
v/n, where M* denotes a maximum cardinality matching. Each remaining iteration strictly
increases | M|, hence there are fewer than y/n iterations remaining. O

The inner loop of the Hopcroft-Karp algorithm must compute a blocking set of augment-
ing paths with respect to M. We now describe how to do this in linear time.

Recalling the distance labels d(v) defined in the proof of d(v) is the length of
the shortest alternating path from a free vertex in L to v; if no such path exists d(v) = oo.
Recall also that an advancing edge in D(G, M) is an edge (x,y) such that d(y) = d(z) + 1,
and that every minimum-length M-augmenting path is composed exclusively of advancing
edges. The Hopcroft-Karp inner loop begins by performing a breadth-first search to compute
the distance labels d(v), along with the set A of advancing edges and a counter ¢(v) for each
vertex that counts the number of incoming advancing edges at v, i.e. advancing edges of the
form (u,v) for some vertex u. It sets ¢ to be the minimum length of an M-augmenting path
(equivalently, the minimum of d(v) over all v € RN F'), marks every vertex as unexplored,
and repeatedly finds augmenting paths using the following procedure. Start at an unexplored
vertex v in RN F such that d(v) = ¢, and trace backward along incoming edges in A until a
vertex u with d(u) = 0 is reached. Add this path P to the blocking set and add its vertices
to a “garbage collection” queue. While the garbage collection queue is non-empty, remove
the vertex v at the head of the queue, mark it as explored, and delete its incident edges
(both outgoing and incoming) from A. When deleting an outgoing edge (v,w), decrement
the counter ¢(w), and if ¢(w) is now equal to 0, then add u to the garbage collection queue.

The inner loop performs only a constant number of operations per edge — traversing it
during the BFS that creates the set A, traversing it while creating the blocking set of paths,
deleting it from A during garbage collection, and decrementing its tail’s counter during
garbage collection — and a constant number of operations per vertex: visiting it during the
BF'S that creates the set A, initializing d(v) and c(v), visiting it during the search for the
blocking set of paths, marking it as explored, inserting it into the garbage collection queue,
and removing it from that queue. Therefore, the entire inner loop runs in linear time.

By design, the algorithm discovers a set of minimum-length M-augmenting paths that are
vertex disjoint, so we need only prove that this set is maximal. By induction on the number
of augmenting paths the algorithm has discovered, the following invariants hold whenever
the garbage collection queue is empty.

1. For every vertex v, ¢(v) counts the number of advancing edges (u,v) that have not yet
been deleted from A.

2. Whenever an edge e is deleted or a vertex v is placed into the garbage collection queue,
any path made up of advancing edges that starts in LN F' and includes edge e or vertex
v must have a vertex in common with the selected set of paths.

3. For every unmarked vertex v, ¢(v) > 0 and there exists a path in A from LN F to v.
(The existence of such a path follows by tracing backwards along edges of A from v to
a vertex u such that d(u) = 0.)

The third invariant ensures that whenever the algorithm starts searching for an augmenting
path at an unmarked free vertex, it is guaranteed to find such a path. The second invariant
ensures that when there are no longer any unmarked free vertices v with d(v) = ¢, the set of
advancing edges no longer contains a path from L N F to RN F that is vertex-disjoint from
the selected ones; thus, the selected set forms a blocking set of augmenting paths as desired.

2 Non-bipartite matching

When the graph G is not bipartite, is still valid: a matching has maximum cardi-
nality if and only if it has no augmenting path. Hence, as before, the problem of finding a
maximum matching reduces to the problem of finding an augmenting path with respect to a
given matching, or else certifying that there is none. However, whereas in the bipartite case
the problem of finding an augmenting path reduced to searching for a path in the directed
graph D(G, M), in the non-bipartite case there is no correspondingly simple reduction.

To see why, it’s useful to consider what goes wrong with the naive idea of searching for
an augmenting path using “breadth-first search over the set of alternating paths”. Here’s
one way of making this information idea precise. For a graph G and matching M, define
H(G, M) to be a directed graph with the same set of vertices as G, and with a directed edge
(u,v) for every pair of vertices such that G' contains a path made up of two edges (u, u’) and
(v',v) such that (u,u’) & M and (u',v) € M. Note that if G contains an M-augmenting
path made up of 2k + 1 edges, then the first 2k of those edges correspond to a k-edge path
in H(G, M) that starts in F, the set of free vertices, and ends in I'(F'), the set of vertices
that are adjacent to a free vertex.

If the converse were true, i.e. if finding a path in H(G, M) from F to I'(F) were equivalent
to finding an M-augmenting path in G, then we could design a maximum non-bipartite
matching algorithm along exactly the same lines as in the bipartite case. Instead, there is a
second alternative represented by the diagram in [Figure 1} a simple path in H(G, M) from
F to I'(F') might correspond to a non-simple alternating walk from F' to N(F') in G, i.e. an
alternating walk that repeats some vertices.

Definition 6. If G is a graph and M is a matching in G, a flower with respect to M is an
M-alternating walk ug, u1, ..., us such that:

1. wug is a free vertex with respect to M;
2. the vertices ug, ..., us_1 are distinct, whereas uy = u, for some number r < s

3. ris even and s is odd.

The stem of the flower is the path wg,us,...,u,. (Note that it is possible that r = 0, in
which case the stem is an empty path.) The blossom of the flower is the cycle w,, ..., us.

(@ ()
(—()

Figure 1: A flower

Lemma 8. If the graph H(G, M) contains a path P from F to I'(F), then G contains either
an M -augmenting path or a flower.

Proof. Suppose that P = vg,vy,...,v; is a simple path in H(G, M) from F to I'(F). For
i =1,2,...,k, the edge (v;_1,v;) in H(G, M) corresponds to a sequence of two edges in
G, the first lying outside M and the second belonging to M. Denote these two edges by
(ugi_o,ugi—1) € M and (ug;_1,us) € M. Since v, = ug, belongs to I'(F'), we may choose a
free vertex wugry1 adjacent to ugr. Now consider the alternating walk wg, uy, ..., usky1 in G.
If all of its vertices are distinct, then it is an M-augmenting path. Otherwise, let ug be the
earliest instance of a repeated vertex in the alternating walk, and let u, denote the earlier
occurrence of this same vertex.

If s is even, then the edge (us_1,us) belongs to M. Note that this means s is not a
free vertex, so r > 0. This means that either (u,_1,u,) or (u,,u,41) belongs to M, hence
us_1 is equal to either u,_1 or u,, ;. This contradicts our choice of s unless r +1 = s — 1,
which is impossible because the case (u,, u,41) € M only occurs when r is odd, in which case
r+ 1 # s — 1 because the left side is even and the right side is odd. Hence, the assumption
that s is even leads to a contradiction.

If s and r are both odd, then (u,,u,,1) € M so us is not a free vertex. In particular this
means that s < 2k + 1. The edge (us, usy1) belongs to M, which implies that usy1 = uyy1.
However, since s + 1 and r + 1 are even, the vertices usyy and u,,; both belong to P,
contradicting the assumption that P is a simple path.

By process of elimination, we have deduced that s is odd and r is even, in which case the
sequence uo, . . ., U, constitutes a flower. L]

If G contains a flower with blossom B, our algorithm for finding an M-augmenting path
in G will depend on an operation called blossom shrinking which forms a new graph G/B
with matching M/B, as follows. The vertices of B are replaced with a single vertex {vs}.
Edges having both endpoints in B are removed. For those having exactly one endpoint in
B, that endpoint is changed to v, and the other endpoint is preserved. Edges having no
endpoints in B are unchanged. Note that this operation may produce a multigraph (i.e.,
there may be multiple edges between the same two vertices) in the case that there is a
vertex having more than one neighbor in B. In the event that G/B contains multiple edges
between the same two vertices, we can discard all but one of those edges without affecting
the algorithm’s correctness; however, in our analysis we prefer to treat G/B as a multigraph
because it means that every edge of GG/B has one unambiguous corresponding edge in G,
which simplifies the analysis.

Let M/B denote the set of edges in GG/B whose corresponding edge in G belongs to M.
Note that M/B is a matching: for all vertices other than v, it is clear that they belong to
at most one edge in M /B, while for v, this holds because if u,, 11, ..., us denotes the list
of vertices in B, in the order that they occur in the flower, then u, (also known as u;) is the
only vertex in the blossom that potentially belongs to an edge of M whose other endpoint

lies outside of M.

Figure 2: Shrinking a blossom

N

()

The following lemma on the relationship between augmenting paths in G' and those in
G/ B accounts for the importance of the blossom shrinking operation.

Lemma 9. If G is a graph, M is a matching, and B is the blossom of a flower with respect
to M, then G/B contains an (M/B)-augmenting path if and only if G contains an M-
augmenting path. Furthermore, any (M/B)-augmenting path in G/B can be modified into
an M -augmenting path in G in time |B].

Proof. Denote the vertices of the flower containing B by wuy, ..., us, numbered as in
ition 6| If P is an (M/B)-augmenting path in G/B and P does not contain vy, then it
is already an M-augmenting path in G. Otherwise, P contains an edge (w,v,) that does
not belong to M/B. Let (w,u;) be the corresponding edge of G, where r <t < s. An M-
augmenting path in G' can be constructed by replacing edge (w,v,) with an M-alternating
path from w to w, in G whose first and last edges do not belong to M. If t is even,
then replace edge (w,u;) with path w, us, w1, ..., u,; if ¢ is odd, then replace (w,u;) with
W, Ug, Ugy, - - -, Us. Notice that the path segment that replaces (w,u;) has fewer than |B]

edges, and the replacement can be done in O(|B]) time if we use suitable data structures,
e.g. representing the path P as a doubly linked list of edges. This justifies the running time
bound in the last sentence of the lemma statement.

It remains for us to prove that if G contains an M-augmenting path, then G/B contains
an (M /B)-augmenting path. One might expect this to be a simple matter of reversing the
operation defined in the preceding paragraph, but in fact it’s a little trickier. To see why,
consider the augmenting path (v, uy, us, w) in The corresponding path in G/B is
(v, vp, w) which is not an alternating path with respect to M/B.

Instead, we first let S = {(u;—1,w;) | ¢ = 1,...,7} denote the set of edges belonging to the
stem of the flower, and we modify M to M’ = M & S. Note that |M'| = |M| and wu,., w41, us
is a flower with respect to M’ (having an empty stem). Hence, B is still a blossom with
respect to M’ and M’/B is still a matching in G/B, with the same number of edges as
M/B. We will now apply the following chain of reasoning to deduce the existence of an
(M/B)-augmenting path in G/B.

G has an M-augmenting path = M is not a maximum matching in G
= M’ is not a maximum matching in G (M| =|M|)
= G has an M’-augmenting path
= (G/B has an (M'/B)-augmenting path (proven below)

= M'/B is not a maximum matching in G/B
= M/B is not a maximum matching in G/B (|M/B| = |M'/B])
= (G/B has an (M /B)-augmenting path

The only step that remains to be justified is that the existence of an M’-augmenting path
in G implies the existence of an (M'/B)-augmenting path in G/B. Suppose that P is an
M’-augmenting path in G. If P does not intersect B then it is already an augmenting path
in G/B. Otherwise, since B contains only one free vertex (namely u,), we know that at

least one endpoint of P does not belong to B. Number the vertices of P as vy, vy, ..., v; with
vg € B, and suppose that v is the lowest-numbered vertex of P that belongs to B. Then
the path (v, v1,...,vk_1,vp) is an (M’/B)-augmenting path in G/B, as desired.]

inspires the following algorithm for solving the maximum perfect matching
problem in non-bipartite graphs.

10

Algorithm 3 Edmonds’ non-bipartite matching algorithm

1
2

3:
4.
5

6
T
8:
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

24

. Initialize M = ().
: repeat
P = SEARCH(G, M) // Return augmenting path, or empty set if none exists.
M+~ MoP
cuntil P =0
. procedure SEARCH(G, M)
Build the graph H(G, M).
Search for a path P from F to I'(F) in H(G, M).
if no path found then
Return P = ()
end if
Post-process P, as in the proof of , to extract an augmenting path or flower.
if augmenting path P is found then
Return P
else

Let B be the blossom of the flower.
Let P' = SEARCH(G/B, M/B)
if P’ =0 then
Return P = ()
else
Transform P’ to an M-augmenting path P as in the proof of [Lemma 9]
end if
end if

: end procedure

The algorithm’s outer loop (Lines 2 and [|) iterates at most n/2 times. In each iteration,

we make a sequence of recursive calls to the SEARCH procedure, which searches for an
augmenting path. Each recursive call involves shrinking a blossom, which reduces the number

of

vertices in the graph by at least 2. Hence, we call SEARCH at most n/2 times within each

iteration of the outer loop. To assess the amount of work done in each call to SEARCH
(excluding work done in recursive sub-calls to the same procedure) we start by observing
that the graph H(G, M) has n vertices and at most 2m edges, since the number of outgoing
edges from a vertex in H(G, M) is bounded above by the degree of that vertex in G. Hence,
building and searching the graph H(G, M) takes O(m) time. (Assuming, as always, that G
has no isolated vertices so that n = O(m).) The remaining steps of SEARCH also take O(m)
steps, if not fewer, as can be seen by reviewing the proofs of [Lemma 8§ and [Lemma 9| Hence,
the overall running time of Edmonds’ algorithm is bounded above by O(mn?).

11

3 Bipartite min-cost perfect matching

In the bipartite minimum-cost perfect matching problem, we are given an undirected bipar-
tite graph G = (L, R, E') as before, together with a (non-negative, real-valued) cost ¢, for
each edge e € E. Let c(u,v) = ¢, if e = (u,v) is an edge of G, and ¢(u,v) = 0o otherwise.
As always, let n denote the number of vertices and m the number of edges of G.

3.1 LP relaxation

A perfect matching M can be described by a matrix (z,,) of 0’s and 1’s, where x,, = 1 if
and only if (u,v) € M. The sum of the entries in each row and column of this matrix equals
1, since each vertex belongs to exactly one element of M. Conversely, for any matrix with
{0, 1}-valued entries, if each row sum and column sum is equal to 1, then the corresponding
set of edges is a perfect matching. Thus, the bipartite minimum-cost matching problem can
be expressed as follows.
min Y, c(u, V) Ty
St Y Ty =1 Yu
Doy Tuy =1 You
Ty € {0,1} Yu, v

This is a discrete optimization problem because of the constraint that x,, € {0,1}. Although
we already know how to solve this discrete optimization problem in polynomial time, many
other such problems are not known to have any polynomial-time solution. It’s often both
interesting and useful to consider what happens when we relax the constraint z,, € {0,1} to
ZTyy > 0, allowing the variables to take any non-negative real value. This turns the problem
into a continuous optimization problem, in fact a linear program.

min Y2, c(u, V)T

St D, Ty =1 Yu
D ou Tuw =1 You
Tyw > 0 Yu, v

How should we think about a matrix of values x,, satisfying the constraints of this linear
program? We’ve seen that if the values are integers, then it represents a perfect matching.
A general solution of this constraint set can be regarded as a fractional perfect matching.
What does a fractional perfect matching look like? An example is illustrated in Figure [3]
Is it possible that this fractional perfect matching achieves a lower cost than any perfect
matching? No, because it can be expressed as a convex combination of perfect matchings
(again, see Figure |3) and consequently its cost is the weighted average of the costs of those
perfect matchings. In particular, at least one of those perfect matchings costs no more than
the fractional perfect matching illustrated on the left side of the figure. This state of affairs is
not a coincidence. The Birkhoff-von Neumann Theorem asserts that every fractional perfect
matching can be decomposed as a convex combination of perfect matchings. (Despite the
eminence of its namesakes, the theorem is actually quite easy to prove. You should try
finding a proof yourself, if you’ve never seen one.)

12

Figure 3: A fractional perfect matching.

Now suppose we have an instance of bipartite minimum-cost perfect matching, and we
want to prove a lower bound on the optimum: we want to prove that every fractional perfect
matching has to cost at least a certain amount. How might we prove this? One way is to
run a minimum-cost perfect matching algorithm, look at its output, and declare this to be
a lower bound on the cost of any fractional perfect matching. (There exist polynomial-time
algorithms for minimum-cost perfect matching, as we will see later in this lecture.) By
the Birkhoff-von Neumann Theorem, this produces a valid lower bound, but it’s not very
satisfying. There’s another, much more direct, way to prove lower bounds on the cost of
every fractional perfect matching, by directly combining constraints of the linear program.
To illustrate this, consider the graph with edge costs as shown in Figure [l Clearly, the

Figure 4: An instance of bipartite minimum cost perfect matching.

minimum cost perfect matching has cost 5. To prove that no fractional perfect matching
can cost less than 5, we combine some constraints of the linear program as follows.

23711 + 25621 = 2
—T11 — T2 -1
4[)312 + 41’22 = 4

Adding these constraints, we find that

11 + 3%12 + 2513'21 + 451722 =5 (1)
11 + 3ZL’12 + 35621 + 4$22 Z 5 (2)

Inequality is derived from because the only change we made on the left side was to
increase the coefficient of x9; from 2 to 3, and we know that x9; > 0. The left side of

13

is the cost of the fractional perfect matching m. We may conclude that the cost of every
fractional perfect matching is at least 5.

What’s the most general form of this technique? For every vertex w € L U R, the linear
program contains a “degree constraint” asserting that the degree of w in the fractional perfect
matching is equal to 1. For each degree constraint, we multiply its left and right sides by
some coefficient to obtain

Zpuxuv = Pu
v

for some u € L, or

Z QuTyy = Qo

for some v € R. Then we sum all of these equations, obtaining

u,v

If the inequality p, + ¢, < ¢(u,v) holds for every (u,v) € L x R, then in the final step of the
proof we (possibly) increase some of the coefficients on the left side of to obtain

D e v) T =Y put Y,

u,v

thus obtaining a lower bound on the cost of every fractional perfect matching. This technique
works whenever the coefficients p,, g, satisfy p, +q, < c(z,y) for every edge (x,y), regardless
of whether the values p,, ¢, are positive or negative. To obtain the strongest possible lower
bound using this technique, we would set the coefficients p,, ¢, by solving the following linear
program.

max Zupu + Zv 4y
st Pyt g < clu,v) Yu,v

This linear program is called the dual of the min-cost-fractional-matching linear program.
We've seen that its optimum constitutes a lower bound on the optimum of the min-cost-
fractional-matching LP. For any linear program, one can follow the same train of thought
to develop a dual linear program. (There’s also a formal way of specifying the procedure; it
involves taking the transpose of the constraint matrix of the LP.) The dual of a minimization
problem is a maximization problem, and its optimum constitutes a lower bound on the
optimum of the minimization problem. This fact is called weak duality; as you've seen,
weak duality is nothing more than an assertion that we can obtain valid inequalities by
taking linear combinations of other valid inequalities, and that this sometimes allows us to
bound the value of an LP solution from above or below. But actually, the optimum value of
an LP is always ezactly equal to the value of its dual LP! This fact is called strong duality
(or sometimes simply “duality”), it is far from obvious, and it has important ramifications
for algorithm design. In the special case of fractional perfect matching problems, strong
duality says that the simple proof technique exemplified above is actually powerful enough
to prove the best possible lower bound on the cost of fractional perfect matchings, for every
instance of the bipartite min-cost perfect matching problem.

14

It turns out that there is a polynomial-time algorithm to solve linear programs. As you
can imagine, this fact also has extremely important ramifications for algorithm design, but
that’s the topic of another lecture.

3.2 Primal-dual algorithm

In this section we will construct a fast algorithm for the bipartite minimum-cost perfect
matching algorithm, exploiting insights gained from the preceding section. The basic plan of
attack is as follows: we will design an algorithm that simultaneously computes two things:
a minimum-cost perfect matching, and a dual solution (vector of p, and ¢, values) whose
value (sum of p,’s and ¢,’s) equals the cost of the perfect matching. As the algorithm
runs, it maintains the a dual solution p, ¢ and a matching M, and it preserves the following
invariants:

1. Every edge (u,v) satisfies p, + ¢, < c(u,v). If p, + q» = c(u,v) we say that edge
e = (u,v) is tight.

2. The elements of M are a subset of the tight edges.

3. The cardinality of M increases by 1 in each phase of the algorithm, until it reaches n.

Assuming the algorithm can maintain these invariants until termination, its correctness will
follow automatically. This is because the matching M at termination time will be a perfect
matching satisfying

Z c(u,v): Z pu+Qv:Zpu+ZQva

(u,v)EM (u,w)EM ucL vER

where the final equation holds because M is a perfect matching. The first invariant of the
algorithm implies that p; ¢'is a feasible dual solution, hence the right side is a lower bound on
the cost of any fractional perfect matching. The left side is the cost of the perfect matching
M, hence M has the minimum cost of any fractional perfect matching.

So, how do we maintain the three invariants listed above while growing M to be a perfect
matching? We initialize M = () and p’= ¢ = 0. Note that the three invariants are trivially
satisfied at initialization time. Now, as long as |M| < n, we want to find a way to either
increase the value of the dual solution or enlarge M without violating any of the invariants.
The easiest way to do this is to find an M-augmenting path P consisting of tight edges: in
that case, we can update M to M @ P without violating any invariants, and we reach the end
of a phase. However, sometimes it’s not possible to find an M-augmenting path consisting
of tight edges: in that case, we must adjust some of the dual variables to make additional
edges tight.

The process of adjusting dual variables is best described as follows. The easiest thing
would be if we could find a vertex w € L that doesn’t belong to any tight edges. Then we
could raise p, by some amount ¢ > 0 until an edge containing u became tight. However,
maybe every u € L belongs to a tight edge. In that case, we need to raise p, by 0 while
lowering some other ¢, by the same amount 0. This is best described in terms of a vertex

15

set T which will have the property that if one endpoint of an edge e € M belongs to T', then
both endpoints of e belong to T'. Whenever T has this property, we can set

0 = min{c(u,v) —py —qu|lu€e LNT,v € R\ T} (4)

and adjust the dual variables by setting p,, < p,+9,q, < q,— 0 forallu e LNT,v € RNT.
This preserves the feasibility of our dual solution 7, ¢ (by the choice of d) and it preserves
the tightness of each edge e € M because every such edge has either both or neither of its
endpoints in T

Let F' be the set of free vertices, i.e. those that don’t belong to any element of M. T
will be constructed by a sort of breadth-first search along tight edges, starting from the set
LNF of free vertices in L. We initialize T'= LN F. Since |M| < n, T is nonempty. Define §
as in ; if § > 0 then adjust dual variables as explained above. Call this a dual adjustment
step. If 6 = 0 then there is at least one tight edge e = (u,v) from LNT to R\T. If v is a free
vertex, then we have discovered an augmenting path P consisting of tight edges (namely, P
consists of a path in T that starts at a free vertex in L, walks to u, then crosses edge e to
get to v) and we update M to M @ P and finish the phase. Call this an augmentation step.
Finally, if v is not a free vertex then we identify an edge e = (v/,v) € M and we add both
v and v’ to T and call this a T-growing step. Notice that the left endpoint of an edge of M
is always added to T at the same time as the right endpoint, which is why 7" never contains
one endpoint of an edge of M unless it contains both.

A phase can contain at most n T-growing steps and at most one augmentation step.
Also, there can never be two consecutive dual adjustment steps (since the value of § drops
to zero after the first such step) so the total number of steps in a phase is O(n). Let’s figure
out the running time of one phase of the algorithm by breaking it down into its component
parts.

1. There is only one augmentation step and it costs O(n).
2. There are O(n) T-growing steps and each costs O(1).
3. There are O(n) dual adjustment steps and each costs O(n).

4. Finally, every step starts by computing the value § using . Thus, the value of ¢
needs to be computed O(n) times. Naively it costs O(m) work each time we need to
compute 9.

Thus, a naive implementation of the primal-dual algorithm takes O(mn?).

However, we can do better using some clever book-keeping combined with efficient data
structures. For a vertex w € T, let s(w) denote the number of the step in which w was
added to T'. Let d, denote the value of ¢ in step s of the phase, and let Ay denote the sum
01 + -+ + 05. Let pys, qus denote the values of the dual variables associated to vertices u, v

16

at the end of step s. Note that

{pu,o YA~ Ay ifueLnT
Pu,s =

Pu0 lfUGL\T
Qo — As+Ayy fveRNT

Qv,s = 0 ®) . (6)
Gv,0 ifve R\T

Consequently, if e = (u,v) is any edge from L NT to R\ T at the end of step s, then
C(u> U) — Pus — Qus = C(U, U) — Puo — As + As(u) —qv,0

The only term on the right side that depends on s is —A,, which is a global value that is
common to all edges. Thus, choosing the edge that minimizes ¢(u, v) — py.s — ¢y s is equivalent
to choosing the edge that minimizes c¢(u,v) — pu,o + Asw) — Gvo- Let us maintain a priority
queue containing all the edges from LNT to R\ T. An edge e = (u,v) is inserted into this
priority queue at the time its left endpoint u is inserted into T". The value associated to e in
the priority queue is c(u,v) — puo + Dsw) — v, and this value never changes as the phase
proceeds. Whenever the algorithm needs to choose the edge that minimizes ¢(u, v) —py.s—qu.s,
it simply extracts the minimum element of this priority queue, repeating as necessary until
it finds an edge whose right endpoint does not belong to 7. The total amount of work
expended on maintaining the priority queue throughout a phase is O(mlogn).

Finally, our gimmick with the priority queue eliminates the need to actually update the
values p,, q, during a dual adjustment step. These values are only needed for computing
the value of d5, and for updating the dual solution at the end of the phase. However, if we
store the values s(u), s(v) for all u,v as well as the values A for all s, then one can compute
any specific value of p, s or ¢, s in constant time using —@. In particular, it takes O(n)
time to compute all the values p,, g, at the end of the phase, and it only takes O(1) time to
compute the value 63 = ¢(u,v) — p, — ¢, once we have identified the edge e = (u,v) using
the priority queue. Thus, all the work to maintain the values p,, g, amounts to only O(n)
per phase.

In total, the amount of work in any phase is bounded by O(mlogn) and consequently
the algorithm’s running time is O(mnlogn).

17

	Bipartite maximum matching
	Definitions
	Alternating paths and cycles; augmenting paths
	Bipartite maximum matching: Naïve algorithm
	The Hopcroft-Karp algorithm

	Non-bipartite matching
	Bipartite min-cost perfect matching
	LP relaxation
	Primal-dual algorithm

