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The multiplicative weights update method is a family of algorithms that have found many
different applications in CS: algorithms for learning and prediction problems, fast algorithms
for approximately solving certain linear programs, and hardness amplification in complexity
theory, to name a few examples. It is a general and surprisingly powerful iterative method
based on maintaining a vector of state variables and applying small multiplicative updates to
the components of the vector to converge toward an optimal solution of some problem. These
notes introduce the basic method and explore two applications: online prediction problems and
packing/covering linear programs.

1 Investing and combining expert advice

In this section we analyze two inter-related problems. The first problem is an investment problem
in which there are n stocks numbered 1,...,n, and an investor with an initial wealth W (0) = 1
must choose in each period how to split the current wealth among the securities. The price
of each stock then increases by some factor between 1 and 1 + ¢ (a different factor for each
stock, not known to the investor at the time of making her investment) and the wealth increases
accordingly. The goal is to do nearly as well as buying and holding the single best-performing
stock.

Let’s introduce some notation for the investment problem. At time ¢t = 1,...,T, the investor
chooses to partition her wealth into shares z1(t),...,z,(t). These shares must be non-negative
(short-selling stocks is disallowed) and they must sum to 1 (the investor’s money must be fully
invested).
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We summarize these constraints by saying that the vector x(t) = (z1(¢), ..., z,(f)) belongs to the
probability simplex A(n). As stated earlier, the amount by which the price of stock i appreciates
at time ¢ is a number between 1 and 1 + ¢. Denote this number by (1 4 &)"().

If we let W(t) denote the investor’s wealth at the end of round ¢, then the wealth at the start
of round ¢ is W(t — 1) and the amount invested in stock i is z;(t)W (¢t — 1). We thus have

n
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The prediction problem that we will study bears some superficial similarities to the investment
problem. (And, as we will see, the similarity extends much deeper.) In this problem there is
a gambler and n “experts”. At time ¢t = 1,...,n, the gambler bets $1 by dividing it among
the experts. Once again, we will use x(f) € A(n) to denote the vector representing how the
gambler splits her bet at time t. Each expert generates a payoff at time ¢ denoted by (), and
the gambler’s payoff is the dot product x(¢) - r(¢). In other words, placing a bet of x;(t) on
expert ¢ yields a payoff of x;(t)r;(t) in round ¢, and the gambler’s total payoff is the sum of these



payoffs. The goal is to gain nearly as much payoff as the strategy that always bets on the single
best-performing expert.

There are some clear relationships between the two problems, but also some clear differences,
chiefly that payoffs accumulate multiplicatively in one problem, and additively in the other.
Consequently, the relationship between the problems becomes clearer when we take the logarithm
of the investor’s wealth. For example, if the investor follows the strategy of buying and holding
stock 7, her wealth after time ¢ would satisfy
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where the last equation should be interpreted as the definition of the notation 7;(1 : ¢). Similarly,
if the investor follows the “uniform buy-and-hold strategy” of initially investing 1/n in each stock,
and never performing any trades after that, then her investment in stock i after time ¢ is given
by (1 + )7  and her log-wealth after time ¢ satisfies
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Letting 7 denote an arbitrary stock (e.g. the best-performing one), the wealth of the uniform
buy-and-hold strategy satisfies

1 1
log, .. W (t) > log,,. (5(1 + 5)““'”) =7r;i(1:t) —log,.(n).

This already gives a useful bound on the additive difference in log-wealth between the uniform
buy-and-hold strategy and the strategy that buys and holds the single best-performing stock.

An important relationship between the investment and prediction problems is expressed by
the following calculation, which applies to an investor who distributes her wealth at time ¢ using
vector x(t). The log-wealth after time ¢ then satisfies the following.
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Summing over t = 1,...,7T, we find that

log, .. W(T) < m ;xa) x(t),



which implies a relation between the log-wealth of an investor using strategy x(1),...,x(7") and
the payoff of a gambler using the same strategy sequence in the prediction problem.

Recall that the uniform buy-and-hold strategy was actually a pretty good strategy for the
investor. This implies that the corresponding prediction strategy is pretty good for the gambler.
In the gambling context (also known as the predicting from expert advice context) the strategy
that corresponds to uniform-buy-and-hold is known as the multiplicative weights algorithm

or Hedge. At time t it predicts the vector x(t) whose i*" component is given by
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We have seen that the payoff of the multiplicative weights algorithm satisfies
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The last line used the identity 2 In(1 + ) > 1 — z which is valid for any z > 0. (See the proof
in Appendix ?7.)

The role of the parameter ¢ > 0 in the two problems deserves some discussion. In the
investment problem, ¢ is a parameter of the model, and one can either treat it as an assumption
about the way stock prices change in discrete time — never by a factor of more than 1+ ¢ from
one time period the next — or one can instead imagine that stock prices change continuously
over time, and the parameter ¢ is determined by how rapidly the investor chooses to engage in
trading. In the prediction problem, on the other hand, the model does not define £ and it is
instead under the discretion of the algorithm designer. There is a tradeoff between choosing a
small or a large value of €, and the performance guarantee
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neatly summarizes the tradeoff. A smaller value of £ allows the gambler to achieve a better
multiplicative approximation to the best expert, at the cost of a larger additive error term. In
short, £ can be interpreted as a “learning rate” parameter: with a small € (slow learning rate)
the gambler pays a huge start-up cost in order to eventually achieve a very close multiplicative
approximation to the optimum; with a large £ the eventual approximation is more crude, but
the start-up cost is much cheaper.

2 Solving linear programs with multiplicative weights

This section presents an application of the multiplicative-weights method to solving packing and
covering linear programs. When A is a non-negative matrix and p, b are non-negative vectors, the
following pair of linear programs are called a packing and a covering linear program, respectively.



max pTy min bTx
s.t. Ay <0 s.t. ATx = p
y=0 r=0

Note that the covering problem is the dual of the packing problem and vice-versa. To develop
intuitions about these linear programs it is useful to adopt the following metaphor. Think of
the entries a;; of matrix A as denoting the amount of raw material ¢ needed to product one unit
of product j. Think of b; as the total supply of resource 7 available to a firm, and p; as the
unit price at which the firm can sell product j. If the vector y in the first LP is interpreted as
the quantity of each product to be produced, then the vector Ay encodes the amount of each
resource required to produce y, the constraint Ay < b says that the firm’s production is limited
by its resource budget, and the optimization criterion (maximize pTy) specifies that the firm’s
goal is to maximize revenue.

The dual LP also admits an interpretation within this metaphor. If we think of the vector
x as designating a unit price for each raw material, then the constraint ATx > p expresses the
property that for each product j, the cost of resources required to produce one unit of j exceeds
the price at which it can be sold. Therefore, if a vector x is feasible for the dual LP, then the
cost of obtaining the resource bundle b at prices x (namely, bTx) exceeds the revenue gained
from selling any product bundle y that can be made from the resources in b (namely, pTy). This
reflects weak duality, the assertion that the maximum of pTy over primal-feasible vectors y is less
than or equal to the minimum of bTx over dual-feasible vectors x. Strong duality asserts that
they are in fact equal; the algorithm we will develop supplies an algorithmic proof of this fact.

The multiplicative weights method for solving packing and covering linear programs was
pioneered by Plotkin, Shmoys, and Tardos and independently by Grigoriadis and Khachiyan.
The version we present here differs a bit from the Plotkin-Shmoys-Tardos exposition of the
algorithm, in order to leverage the connection to the multiplicative weights method for online
prediction, as well as to incorporate a “width reduction” technique introduced by Garg and
Konemann. We will make the simplifying assuymption that b = B - 1, for some scalar B > 0.
We can always manipulate the linear program so that it satisfies this assumption, by simply
changing the units in which resource consumption is measured. Also, after rescaling the units
of resource consumption (by a common factor) we can assume that 0 < a;; < 1 for all 4,5 —
possibly at the expense of changing the value of B.

The algorithm is as follows.

Algorithm 1 Multiplicative weights algorithm for packing/covering LP’s

1: Given: parameters €, > 0.
2: Initialize: ¢t < 0,Y « 0. // Y is a vector storing §(y1 + -+ + Y)-
3: while AY < B1 do
4: t+—t+1. LAY
5: Vi=1,...,n (x;); Z?(Z:Zle)dy)j/é.
. x] Ay
6: Y < argIming c a () { ;Ty } .

8: end while




The vector z; is being set using the multiplicative weights algorithm with payoff sequence
ry = Ay,. In the expression defining y;, the ratio I;TT—A;’ can be interpreted as the cost-benefit ratio
of producing a product randomly sampled from the probability distribution y. The arg min of
this ratio will therefore be a point-mass distribution concentrated on the single product with the
smallest cost-benefit ratio, i.e. one can always choose the vector y; to have only one non-zero
entry.

To analyze the algorithm, we begin with the performance guarantee of the multiplicative
weights prediction algorithm. Let T be the time when the algorithm terminates.
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(The second inequality is justified by the stopping condition for the algorithm.)
Next we work on deriving an upper bound on the quantity on the left side of (1). The
definition of y; implies that for any other vector y,
z{ Ay > xIAyt' 2)
Py Pyt
Setting y in this inequality equal to y,, the optimum solution of the primal linear program, we
find that
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T=y > Ty, (4)
t=1
Summing (3) over t = 1,...,T and using the definition of Z, we obtain
T
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. 7T T
5 o T Ay, > ;xt Ay;. (5)
Each of the vectors 1, ..., z7 satisfies /1 = 1, so their weighted average T satisfies 271 = 1 as

well. Using the inequality Ay, < B1, which follows from primal feasibility of y,, we now deduce
that

B =z7(B1) > zT Ay.. (6)
Combining (1), (5), (6) we obtain
pY B B Inn
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Thus, if we want to ensure that the algorithm computes a vector Y which is at least a (1 — 2¢)-
approximation to the optimum of the linear program, it suffices to set § = i—lj.

To bound the number of iterations of the algorithm’s while loop, let v be a parameter such
that every column of A has an entry bounded below by ~. Then, in every iteration some entry
of the vector AY increases by at least 9. Since the algorithm stops as soon as some entry of
AY exceeds B, the number of iterations is bounded above by nB/(yd). Substituting § = 2

Inn’
this means that the number of iterations is bounded by (nlogn)/(g*y).



3 Multicommodity Flow

Now it’s time to see how these ideas are applied in the context of a concrete optimization problem,
multicommodity flow, which is a generalization of network flow featuring multiple source-sink
pairs.

3.1 Problem definition

A multicommodity flow problem is specified by a graph (directed or undirected) G, a collection
of k source-sink pairs {(s;,;)}%_,, and a non-negative capacity c(e) for every edge e = (u,v). A
multicommodity flow is a k-tuple of flows (fi,..., fx) such that f; is a flow from s; to ¢;, and the
superposition of all k flows satisfies the edge capacity constraints in the sense that for every edge
e = (u,v) we have

k
[Undirected case] — c(e) > Z | fi(u,v)]
i=1

k
[Directed case] — c(e) > Zmax{o, fi(u,v)}

There are two different objectives that are commonly studied in multicommodity flow theory.
Maximum throughput: Maximize Zle | fi]-

Maximum concurrent flow: Maximize minj<;< | f;|.

3.2 The case of uniform edge capacities

It is fairly straightforward to apply the multiplicative-weights algorithm to solve multicommodity
flow problems in graphs where all edges have identical capacity. (We will consider the general
case, in which edges don’t necessarily have identical capacity, in the next section of these notes.)
Letting B denote the capacity of each edge, the multicommodity flow problem can be expressed
by the following linear program with exponentially many variables yp, where P ranges over all
paths that join some source-sink pair (s;, t;).

max Y .pYp
s.t. > peepyp < cle) Ve (9)
yp >0 VP

This problem is a packing linear program. The objective function of the packing problem has
coefficient vector p = 1, and the constraint matrix A has entries a;; = 1 if edge e; belongs to
path P;. Note that every column of A contains at least one entry equal to 1, so this problem has
v = 1. Thus, the multiplicative weights algorithm finds a (1 — 2¢)-approximation of the optimal
solution in at most mlogn/e? iterations, where m denotes the number of edges. (In previous
sections we referred to the number of constraints in the packing LP as n rather than m, but it
would be too confusing to use the letter n to denote the number of edges in a graph, which is
always denoted by m. Accordingly, we have switched to using m in this section.)
In any iteration of the algorithm, we must solve the minimization problem arg min{(z{ Ay)/(17y) |

y € A(paths)}, where A(paths) denotes the set of all probability distributions over paths that



join some (s;,t;) pair. Recalling that the minimum is always achieved at a distribution y that
assigns probability 1 to one path and 0 to all others, and that the vector Ay in this case is a
{0, 1}-vector that identifies the edges of the path, we see that the expression z{ Ay can be inter-
preted as the combined cost of the edges in path y, when edge costs are given by the entries of the
vector x;. The expression 1Ty is simply equal to 1, so it can be ignored. Thus, the minimization
problem that we must solve in one iteration of the algorithm is to find a minimum-cost path
with respect to the edge costs given by x;. This is easily done by running Dijkstra’s algorithm
to find the minimum cost (s;, ;) path for each i = 1,... k.

In summary, we have derived the following algorithm for approximately solving the maximum-
throughput multicommodity flow problem in graphs whose edges all have identical capacity B.
The algorithm reduces computing a (1 — 2¢)-approximate maximum multicommodity flow to
solving km Inm/e? shortest-path problems. In the pseudocode, the variable z, for an edge e = ¢;
keeps track of the amount of flow we have sent on edge e, and x, = (1+¢)?*/? is a variable whose
value in loop iteration ¢ is proportional to (but not equal to) the i*" entry of the vector z; in
the above discussion. The algorithm’s validity is unaffected by the fact that the vector (x.)cep
is a scalar multiple of the vector x; in the above discussion, because the outcome of the min-cost
path computation with respect to edge cost vector x is unaffected by rescaling the costs.

Algorithm 2 Max-throughput multicommodity flow algorithm, uniform-capacity case.

1: Given: Parameter ¢ > 0.

2: Inmitialize: 6 = &?B/(Inm), x =1, fi=---= f,=0, 2 =0.
3: while 2z < B1 do

4: fori=1,...,kdo

5: P; < minimum cost path from s; to t;, with respect to edge costs z..
6: end for

7 i < argmin, ;. {cost(F;)}.

8: Update flow f; by sending ¢ units of flow on F;.

9: for all e € P; do

10: Te + (14 ¢)z..

11: Ze < Ze + 0.

12: end for

13: end while

Note that in this example, the fact that the packing linear program has exponentially many
variables did not prevent us from designing an efficient algorithm to solve it. That is because,
although the matrix A and vector Y in the multiplicative-weights algorithm have exponentially
many entries, the algorithm never explicitly stores and manipulates them. This theme is quite
common in applications of the multiplicative-weights method: the space requirement of the
algorithm scales linearly with the number of constraints in the primal LP, but we can handle
exponentially many variables in polynomial space and time, provided that we have a subroutine
that efficiently solves the minimization problem arg min{(z{Ay)/(pTy)}.

3.3 General edge capacities

When edges have differing capacities, a small modification to the foregoing algorithm permits us
to use it for computing an approximate maximum-throughput multicommodity flow.



The issue is that the multiplicative-weights algorithm we have presented in these notes re-
quires a packing LP in which all of the constraints have the same number, B, appearing on their
right-hand side. As a first step in dealing with this, we can rescale both sides of each constraint:

Z?JPSC(G) <:>Z ?JP<1
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The trouble with this rescaling is that now the constraint matrix entry a;; is equal to 1/c(e;) if
edge e; belongs to path P;. Our algorithm requires 0 < a;; < 1 and this could be violated if
some edges have capacity less than 1.

The simplest way to deal with this issue is to preprocess the graph, scaling all edge capacities
by 1/¢min Where ¢y, denotes the minimum edge capacity, to obtain a graph whose edge capacities
are bounded below by 1. Then we can solve for an approximate max-flow in the rescaled graph,
and finally scale that flow down by c,;, to obtain a flow that is feasible — and still approximately
throughput-maximizing — in the original graph. To bound the number of iterations that this
algorithm requires, we must determine the value of 7y for the rescaled graph. The rescaled capacity
of edge e is ¢(€)/Cmin, SO the matrix entry a;; is cmin/c(e;) if edge e; belongs to path P;. Thus,
the maximum entry in column j of the constraint matrix is ¢min/Cmin(F;), Where cpin(FP;) denotes
the minimum edge capacity in P;. Thus v = min;{cmin/cmn(F;)} and the number of iterations

is
mlnm  mlnm {cmin(Pj)}

ver e i Cmin
This could be a very large number of iterations, if the graph contains some very “fat” paths whose
minimum-capacity edge has much more capacity than the globally minimum edge capacity.

Rather than rescaling all of the edge capacities in the graph by the same common factor, a
smarter solution is to rescale the flow on path P; by the factor cyin(P;). More precisely, define
the “P-saturating flow ” to be the flow that sends ¢y, (P) units on every edge of P, and zero
on all other edges. Our LP will have variables yp for every path P that joins s; to ¢; for some
1 =1,...,k, and a primal-feasible solution will correspond to a multicommodity flow that is a
weighted sum of P-saturating flows, scaled by the values yp.

This leads to the following linear programming formulation of maximum-throughput multi-

commodity flow.

max > p Cmin(P)yp
s.t. Y Pecp C"‘C”‘ P)yp <1 Ve (10)
yp >0 VP

The constraint matrix has entries a;; = C“‘C‘ne if e; belongs to P;. By the definition of ¢yin(F;),
this implies that all entries are between 0 and 1, and that every column of A has at least
one entry equal to 1. Thus the multiplicative Welghts method, applied to this LP formula-
tion, yields a (1 — 2¢)-approximate solution after at most m?;m iterations. To conclude the
discussion of this algorithm, we should specify a procedure for solving the minimization problem

arg min{(z] Ay)/(pTy)} in every iteration of the while loop If y is the indicator vector for a path

P, then pTy = cuin(P) while Ay is the vector whose it entry is %)) if e; belongs to P, and 0



otherwise. Thus,
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so the minimization problem that must be solved in each loop iteration is merely finding a

minimum-cost path with respect to the edge costs cost(e;) = cf;f).

Summarizing this discussion, we have the following algorithm which finds a (1—2¢)-approximate
maximum-throughput multicommodity flow in general graphs using mi# loop iterations, each
of which requires £ minimum-cost path computations. In the pseudocode, the variable z, for an
edge e = e; keeps track of the fraction of e’s capacity that has already been consumed by the
flow sent in previous loop iterations. The variable z, = (1 + ¢)?/? is a variable whose value in
loop iteration ¢ is proportional to (but not equal to) the i*" entry of the vector x; in the above
discussion. As in the preceding section, the algorithm’s validity is unaffected by the fact that the
vector (z.)ecp is a scalar multiple of the vector z; in the above discussion, because the outcome
of the min-cost path computation with respect to edge cost vector x is unaffected by rescaling
the costs.

Algorithm 3 Max-throughput multicommodity flow algorithm, general case.

1: Given: Parameter ¢ > 0.

2: Initialize: 6 =&?/(Inm), z =1, fi=---=f1, =0, 2 = 0.
3: while z < 1 do

4: for:=1,...,k do

5: P; <~ minimum cost path from s; to t;, with respect to edge costs z./c(e).
6: end for

7 i < argmin, ., {cost(P;)}.

8: Update flow f; by sending dcpin(p;) units of flow on P;.

9: for all e € P; do

10: 4 —CC(SD 2),

11: Te ¢ (1 +¢)z..

12: Ze 4 ZeF+OT.

13: end for

14: end while

3.4 Maximum concurrent flow

The maximum concurrent flow problem can be solved using almost exactly the same technique.
While the packing formulation of maximum-throughput multicommodity flow involves packing
individual paths, each of which connects one source-sink pair, the natural packing formulation
of maximum concurrent multicommodity flow involves packing k-tuples of paths, one for each
source-sink pair. In the following LP, @) is an index that ranges over all such k-tuples. (As
before, this means that there are exponentially many variables yq. Likewise, as before, this will
not inhibit our ability to design an efficient algorithm for approximately solving the LP, because
the algorithm need not explicitly represent all of the entries of the constraint matrix A or the
vector Y'.) The notation ng(e) refers to the number of paths in the k-tuple () that contain edge e;



thus, its value is always an integer between 0 and k. The notation ¢y, (Q) refers to the minimum
capacity of an edge e such that ng(e) > 0.

max > o Cmin(Q)Yq
nQ(e)emin(Q)
s.t. ZQ:nQ(e)>O QkTyQ S 1 Ve (11)
yQ Z 0 VQ

For a path-tuple @, the “Q-saturating flow” is a multicommodity flow that sends cyin(Q)/k
units of flow on each of the k paths in Q). (The scaling by 1/k is necessary, to ensure that the
@-saturating flow doesn’t exceed the capacity of any edge, even if the minimum-capacity edge
of @ belongs to all k of the paths in @).) A primal-feasible vector for the linear program 11 can
be interpreted as a weighted sum of )-saturating flows, weighted by yg. The coefficients in the
capacity constraint for each e are justified by the observation that a ()-saturating flow sends a
total of ng(e)cmn(Q)/k units of flow on edge e.

The value of v for this linear program is 1/k, so after at most kmIn(m)/e? we obtain a
(1 — 2¢)-approximation to the maximum concurrent multicommodity flow. The minimization

problem arg min{(x] Ay)/(pTy)} has the following interpretation: when y is the indicator vector
h ngQ (el) cmin(Q)

of a path-tuple @, then pTy = cpuin(Q), while Ay is the vector whose i* Ten)

Thus, letting Q1, . .., Q) denote the k paths that make up ), we have

2T _ Ty nQ(ei) Cmin(Q) _ Cmin(Q) Tty (e = Cmin(@) - Tt
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cost path from s; to t;, for each j = 1,..., k, with respect to the edge costs

Hence, the ratio

is minimized by choosing () to be the k-tuple consisting of the minimum-
Lt 4

c(ei)”

Algorithm 4 Maximum concurrent multicommodity flow algorithm

1: Given: Parameter ¢ > 0.

2: Initialize: 6 =&?/(Inm), z =1, fi=---=f1, =0, 2 =0.
3: while z < 1 do

4: fori=1,... kdo

5: (Q); < minimum cost path from s; to ¢;, with respect to edge costs x./c(e).
6: Update flow f; by sending d cmin(p;)/k units of flow on Q.
7: end for

8: for all edges e do
9: ng(e) < the number of i such that e € Q);.
10: r ¢ in@nold
11: Te < (1 + &) z..
12: Ze 4 Ze+OT.

13: end for
14: end while




4 The sparsest cut problem

Given the importance of the max-flow min-cut theorem in discrete mathematics and optimization,
it is natural to wonder if there is an analogue of this theorem for multicommodity fows.

If one adopts the interpretation that “a minimum cut is an edge set whose capacity certifies
an upper bound on the maximum flow,” then the next question is: what upper bounds on
throughput or concurrent multicommodity can be certified by an edge set?

Definition 1. Let G be a graph with edge capacities c¢(e) > 0 and source-sink pairs {(s;, ;) }*_;.
An edge set A is said to separate a source-sink pair (s;,t;) if every path from s; to ¢; contains
an edge of A. A cut is an edge set that separates at least one source-sink pair. A multicut is an
edge set that separates every source-sink pair. The sparsity of a cut is its capacity divided by
the number of source-sink pairs it separates.

If G contains a multicut A of capacity ¢, then the throughput of any multicommodity flow
cannot exceed c¢, since each unit of flow must consume at least one unit of capacity on one of
the edges in A. A similar argument shows that if G' contains a cut A with sparsity ¢, then the
maximum concurrent flow rate cannot exceed c.

Unlike in the case of single-commodity flows, it is not the case that the maximum throughput
is equal to the minimum capacity of a multicut, not is it the case that the maximum concurrent
flow rate is equal to the sparsest cut value. In both cases, the relevant cut-defined quantity
may exceed the flow-defined quantity, by only by a factor of O(log k) in undirected graphs. This
bound is known to be tight up to constant factors. In directed graphs the situation is worse:
the minimum multicut may exceed the maximum throughput by ©(k) and this is again tight in
terms of k, but the way this gap depends on n (the number of vertices) in the worst case remains
an open question.

In this section we will present a randomized algorithm to construct a cut whose (expected)
sparsity is within a O(log k) factor of the maximum concurrent flow rate, in undirected graphs.
Thus, we will be giving an algorithmic proof of the O(log k)-approximate max-flow min-cut
theorem for concurrent multicommodity flows.

4.1 Fractional cuts

To start designing the algorithm, let us recall the sparsest cut LP and its dual. (In the following
linear programs, the index () ranges over k-tuples of paths joining each source to its sink.)

max > 5 YQ min > c(e)x,
s.t. Ve > onele)yq < cle) s.t. VQ Y. ngle)re >1
VQ yo >0 Ve x>0

If one interprets z = (z.)ecp as a vector of edge lengths, then the expression ) | ng(e)z. in the
dual LP represents the sum of the lengths of all paths in ). Thus, a feasible solution of the dual
LP is an assignment of a length to each edge of (G, such that the sum of shortest-path lengths
between all source-sink pairs is at least 1. For example, if there is a cut A whose sparsity is
C'/p because it separates p source-sink pairs and has capacity C, then we obtain a dual-feasible
vector by setting z. = 1/p if e belongs to A and z, = 0 otherwise. For each of the p source-sink
pairs separated by A, their distance in the graph with edge lengths defined by x is at least



1/p, and therefore the combined distance of all source-sink pairs is at least 1 as required by the
dual feasibility condition. For this particular dual-feasible vector x, the dual objective function
is > .cacle)/p = C/p, which matches the sparsity of A. Thus, we have confirmed that the
optimum of the dual LP is a lower bound on the sparsest cut value. (Which we knew anyhow,
because the optimum of the dual LP coincides with the maximum concurrent multicommodity
flow rate, and we already knew that was a lower bound on the sparsest cut value.)

Owing to these considerations, a dual-feasible vector x is often called a fractional cut and
Y. cle)x, is called the sparsity of the fractional cut. Our randomized algorithm for the sparsest
cut problem starts by computing an optimal (or approximately optimal) solution x to the dual
LP — for example, using the multiplicative weights algorithm developed in the preceding section
— and then “rounding” z to produce a cut whose sparsity exceeds the sparsity of x by a factor
of at most O(log k), in expectation.

4.2 Dependent rounding

One natural idea for transforming a fractional cut into a genuine cut is to sample a random edge
set by selecting each edge e independently with probability x.. This turns out to be a terrible
idea. For example, consider that case that k£ = 1 (a single-commodity flow problem) and G is the
complete bipartite graph K ,,; the two nodes on the left side of the bipartition are the source and
sink, s and ¢. In this graph there is a fractional cut defined by setting x. = 1/2 for every edge e.
However, if we construct a random edge by sampling every edge independently with probability
1/2, the probability of separating s from ¢ is exponentially small in n.

Rather than independent randomized rounding, a better plan is to do some sort of dependent
rounding. Once again, the case of single-commodity flows is a fertile source of intuition. Suppose
x is a fractional cut for a single-commodity flow problem with source s and sink ¢. Using z, we
will construct a random cut based on a sort of “breadth-first search” starting from s. For every
vertex u let d(s,u) denote the length of the shortest path from s to u when edge lengths are
defined by z. Choose a uniformly random number r € [0, 1], and cut all edges (u,v) such that
d(s,u) < r < d(s,v). This random cut always separates s from ¢: on every path from s to ¢
there is an earliest vertex whose distance from s exceeds r, and the edge leading into this vertex
belongs to the cut. The expected capacity of the cut can be computed by linearity of expectation:
for any edge e = (u,v), the probability that the random cut contains e is |d(s,u) —d(s,v)|, which
is bounded above by z.. Hence the expected capacity of the random cut is bounded above
by >, c(e)z.. We have thus shown that in the special case of single-commodity flow, for any
fractional cut of capacity C, there is a simple randomized algorithm to compute a cut whose
expected capacity is at most C.

The randomized sparsest cut algorithm that we will develop uses a similar dependent rounding
scheme based on breadth-first search, but this time starting from a set of sources rather than
just one source. The precise sampling procedure looks a little bit strange at first sight. Here it
is:

1. Sample ¢ uniformly at random from the set {0, 1,..., [log(2k)]}.

2. Sample a random set W by selecting each element of the set {si,t1, 59,19, ..., Sk, tx} inde-
pendently with probability 277,

3. Sample a uniformly random r in [0, 1].



4. Cut all edges (u,v) such that d(u, W) < r < d(v, W), where the expression d(u, W) refers
to the minimum of d(u,w) over all w € W.

Why does this work? We have to estimate two things: the expected capacity of the cut, and the
expected number of source-sink pairs that it separates.

Expected capacity. Estimating the expected capacity is surprisingly easy. It closely parallels
the argument in the single-commodity case. For an edge e = (u,v), no matter what set W is
chosen, we have

Pr(d(u, W) <r <d(v,W)) = |d(u, W) —d(v, W)| < z.

so the expected combined capacity of the edges in the cut, by linearity of expectation, is at most
> . c(e)xe, the value of the fractional cut z. Recall that this is equal to the maximum concurrent
flow rate, if x is an optimal solution to the dual of the maximum concurrent flow LP.

Expected number of separated pairs. For a source-sink pair (s;,;), the probability that
the cut separates s; from t; is

/ Pr(d(s W) < r < d(t,, W) + Pr(d(t,. W) < < d(s,, V)] dr

To prove a lower bound on this integral, we will show that for 0 < r < %d(si, t;), the integrand
is bounded below by €(1/log(2k)). This will imply that the integral is bounded below by
Q(1/log(2k))d(s;,t;). Recall that dual-feasibility of = implies that Zle d(s;,t;) = 1. Thus, the
expected number of source-sink pairs separated by our random cut is (1/log(2k)).

For 0 < r < %d(si,ti) let S and T denote the subsets of {s1,t1,..., sk, tx} consisting of all
terminals within distance r of s; and t;, respectively. Note that S and T are non-empty (they
contain s; and t;, respectively) and they are disjoint, because r < d(s;,t;). The event that
d(si, W) < r < d(t;, W) is the same as the event that S N W is nonempty but 7N W is not,
and similarly for the event d(t;, W) < r < d(s;,W). Hence the integrand Pr(d(s;, W) < r <
d(t;, W)) + Pr(d(t;, W) < r < d(s;,W)) is equal to the probability that precisely one of the
sets SN W, T NW is non-empty. Note that whenever |(SUT)NW| = 1, it is always the case
that precisely one of the sets S N W, T NW is non-empty. Let h = |S UT| There is a unique
t €{0,1,..., [log(2k)]} such that 2! < h < 2/*!. Assuming this value of ¢ is sampled in the first
step of our sampling algorithm, the probability that W contains exactly one element of SUT is
precisely

—t i1 B 1 0 —(h—=1)/(2t-1) -3
h-270-(1—=27%) =5 1+2t_1 > e >e ",

So the integrand is bounded below by e=3 - m when 0 < r < %d(si, t;), which completes the
proof.

4.3 Rejection sampling

You may notice that we promised a sampling algorithm that produces a random cut whose
expected sparsity is O(log k) times the maximum concurrent flow rate ) _c(e)x.. Instead we
have given a sampling algorithm that produces a random cut A such that

Elcap(A)] _ 5
Efep(A)] < e log(2k) Zc(e)xe. (12)

e



which is not quite the same thing. (Here, cap(A) denotes the capacity of A and sep(A) denotes
the number of source-sink pairs that it separates.) To fix this problem, we rewrite (12) as follows,
using the formula cap(A) = sep(A) - sparsity(A) along with the definition of the expected value
of a random variable:

- > 4 Pr(A) cap(A) _ > 4 Pr(A) sep(A) - sparsity(A) |

e® log(2k) ZC(e)xe = S, Pr(A) sep(A) >, Pr(A) sep(A)

e

So, if we adjust our sampling rule so that the probability of sampling a given cut A is scaled up
by sep(A) (and then renormalized so that probabilities sum up to 1) we get a random cut whose
expected sparsity is at most e log(2k) >, c(e)z., as desired. One way to adjust the probabilities
in this way is to use rejection sampling, which leads to the following algorithm.

Algorithm 5 Rounding a fractional cut to a sparse cut.

1: Given: fractional cut x defining shortest-path distances d(-, -).

2: repeat
3: Sample ¢ uniformly at random from the set {0, 1,..., |log(2k)|}.
4: Sample a random set W by selecting each element of the set {si,t1,s9,t,..., Sk, tx}

independently with probability 2.
Sample a uniformly random r in [0, 1].
A= {(u,v) | du, W) <r <d(v,IW)}.
Sample a uniformly random j € {1,..., k}.
until j < sep(A)

Why does this work? Let Pr(A) denote the probability of sampling A under the previous
algorithm. Imagine that we modified the algorithm to run a single iteration of the repeat loop
and either output A if it passes the test j < sep(A) at the end of the loop, or else the algorithm
simply fails and outputs nothing. For any cut A, the probability that this modified algorithm
outputs A would be Pr(A) - %. In other words, conditional on succeeding, the modified
algorithm samples a cut from exactly the rescaled distribution that we wanted to sample from.
By repeating the loop until it succeeds, we guarantee that the algorithm draws one sample from
this conditional distribution.



