Analysis of Algorithms Linear Programming Notes
CS 6820 Fall 2014 Lectures, October 3-20, 2014

1 Linear programming

The linear programming (LP) problem is the following optimization problem. We are given
matrix A and vectors b and ¢ and the problem is to find x that

max(cz such that: Az < b}.

Assume that A is an n by m matrix, b is an m vector, and ¢ and x are n vectors so the
multiplications, and inequalities above make sense. So x is a vector of n variables, and
Ax < bis a set of m inequalities. An example in two variables would be

maxxy + xo
21131 + X9
T1 + 279

€

IV IV IA A
o o ot w

X2

ya

Figure 1: linear program in two dimensions.

An algorithm for linear programming takes A, b and ¢ as input, and returns one of the
following three answers:

e “no solutions exist”, if there is no solution = such that Az <b.
e “the maximum is unbounded”, if for any y there is a solution Az < b with cx > 7.

e return a vector z that satisfies Az < b and achieves the maximum of cz.

2 First example matching and fractional matching

As a first example of linear programming consider the matching problem. We are given a
graph G = (V| E). To think of matching this way, we associate a variable z,. with every edge
e € E. We would like to think of these variables taking values 0 or 1 with x. = 1 indicating
that edge e in the matching, and 0 when its not in the matching. To write the maximum
matching problem as a set of inequalities we have

ze € {0,1}forallee E
Z z., < lforallveV

€ adjacent to vV

max E Te
e

Note that this is an integer linear program, as we require x. to be 0 or 1, and not a fractional
value between the two.

Lemma 1 Integer solutions x to the above inequalities are in one-to-one correspondence to
matchings M = {e : x. = 1}, with the matching of maximum size corresponding to the
optimal solution.

To define the fractional matching problem we replace the constrain z, € {0,1} by 0 < x, < 1
for all edges. So the fractional matching problem is

0<z, < lforallee F
Z 7. < lforallveV

e adjacent to U

max E Te
e

What can we say about the maximum? One way to derive bounds on the sum is to add
up all the n = |V| inequalities for the nodes. We get

Z Z Te <M.

v e adjacent to U

Each edge e = (v,u) occurs twice on the left hand side, as e is on the list of edges for the
sum at the node v and u, so the inequality is

22% <n,
e

i.e., the sum is at most n/2. Not only the maximum matching is limited to at most half the
number of vertices, but also the maximum fractional matching.

Alternately, we can add up a subset of the inequalities. A subset A C V' is a vertex cover
if A contains at least one of the ends at each edge e. Adding the inequalities for v € A we

get
Y oz <Al

VEA e adjacent to v

Since A is a vertex cover, each edge variable z, occurs at least once on the left hand side,
and some occurs twice. However, we also have that x, > 0, so we also have

dwe <> > w <Al

VEA e adjacent to v

for all vertex covers A. The minimum vertex cover problem is to find a vertex cover of
minimum size. The above inequality is true for all vertex covers, and hence also for the
minimum vertex cover.

Lemma 2 The mazimum), x. for a fractional matching is at most the minimum size | Al
of a vertex cover.

We can further strengthen the inequality by considering fractional vertex cover: adding
each inequality with a nonnegative multiplier y,. A vector g, > 0 for all v € V' is a fractional
vertex cover if for each edge e = (v,u) we have y, + y, > 1. Note that a fractional vertex
cover where y, € {0, 1} is a regular vertex cover.

Lemma 3 Integer solutions y to the above inequalities are in one-to-one correspondence to
vertex covers A = {v :y, = 1}, with the vertex cover of minimum size corresponding to the
integer solution with minimum Y, Y.

Consider a fractional vertex cover y. Multiplying ze < 1 by y, we get

e adjacent to v “ €

Yo Z Te < Yo

e adjacent to U

and adding the inequalities for all nodes (and turning the sides around to help the write-up),
we get

v = D> w D> w

veV veV e adjacent to vV

= Z xe(yv + yu)

e=(u,v)€E

sze

e=(u,v)eE

where the equation in the middle is just reordering the sum, and the inequality follows as y
is a fractional vertex cover and x is nonnegative.
Summing up we get the following main theorem

Theorem 4

Al

max ‘M‘ S max:r E :Ce S mz/n’y E yv S m?’nA vertex cover
matching M
e v
where the maximum in the middle is over fractional matchings x, and the minimum is over
fractional vertex covers y.

Remark. Recall from a couple lectures ago we have seen as an application of max-flows
and min-cuts that in bipartite graph the size of a maximum matching equals the minimum
size of a vertex cover, so there is equation throughout the chain on inequalities above in
bipartite graphs. This is not true in general graphs. Consider for example a triangle. The
maximum matching is of size 1, the minimum vertex cover needs 2 nodes, and note that
x. = 0.5 for all e, and y, = 0.5 for all v define fractional matching and fractional vertex
covers with values 1.5. More generally, consider a complete graph on n = 2k 41 nodes. The
maximum matching is of size n, we can get a fractional matching of size n/2, by say using a
triangle with 1/2 on each edge, and a matching on the rest. Putting y, = 1/2 in each node
gives a fractional vertex cover of value n/2 also, while the minimum size of an integer vertex
cover is n — 1.

3 Linear programs and their duals

Using the example of fractional matching, we derived upper bounds on the maximum, by
adding up fractional copies of the inequalities (multiplying each by a nonnegative value y,.
Thinking about such bounds more generally leads to the concept of the dual of a linear
program. Consider again linear programs in the general form

max(cx such that: Az < b}.

Let a;x < b; denote the inequality in the ¢th row of this system. For any nonnegative y; > 0
we can get the inequality y;(a;z) < y;b;, and adding up such inequalities for a vector y > 0

we get
Z yi(a;r) < Z Yib;

or using vector notation, we have y(Az) < yb. If it happens to be the case, that yA = ¢,
than the inequality we just derived is cx < yb, hence yb is an upper bound of the maximum
our linear program seeks to find. The dual linear program is the best such upper bound
possible. More formally, it is the program

min(yb : y > 0 and yA = c}.

By the way we derived this program, for each y the value yb is an upper bound of our original
linear program, which immediately gives us the following.

Theorem 5 (weak duality) For any linear program defined by matriz A and vectors b and
¢ we have
max(czr : Az < b} <min(yb:y >0 and yA = c}.

4 Fractional matchings, flows, and linear programs in
nonnegative variables

Going back to fractional matching, the fractional matching problem had inequalities for all
vertices, but also had constraints that require each variable 0 < z, < 1. Observe that the
constraints z, < 1 for an edge e = (u, v) are redundant, as they follow from the inequalities
that the variables associated with edges adjacent to, say the vertex v, need to sum to at
most 1. However, the constraints x. > 0 are important. It is useful to thing about what is
the dual of a linear program with = > 0 constraints. To take the dual of this linear program
with the method we have seen so far, we need to introduce nonnegative variables associates
with both the Ax < b constraints, as well as the x > 0 constraints (which we may want
to write as —z < 0). Lets call this second set of variables s. Taking the dual we get the
following;:
min(yb+ s0:y > 0,s <0 and yA — s = c}.

Since the right hand side of the second set of constraints is 0, the s variables do not contribute
to the objective function, so we can simply the dual linear program to be the following

min(yb : y > 0 and yA < c}.
We get the

Theorem 6 (weak duality II) For any linear program defined by matriz A and vectors b
and c where the solution is required to be nonnegative, we have

max(cx:x >0, Az < b} <min(yb:y >0 and yA > c}.

Notice that this applying this to fractional matching we see that fractional vertex cover is
the dual linear program for fractional matching. When we write the fractional matching
inequalities as a matrix Ax < b, we have a variable for each edge, and a constraint for each
vertex. The matrix A therefore is m = |E| by n = |V|. The matrix A has 0/1 entries. A
row of A corresponding to vertex v has 1 in positions corresponding to edges e adjacent to
v, and hence a column of A corresponding to an edge e = (u,v) has 1 in the two positions
associated with the two vertices v and v. So the dual inequality yA > ¢ becomes y,, +y, > 1
for all edges e = (u,v).

Corollary 7 The dual linear program for fractional matching is the linear program for frac-
tional vertex cover.

Recall that in bipartite graphs we have seen that the maximum matching is the same size
as the minimum size of a vertex cover. This implies that in bipartite graphs the maximum
fractional matching is the same size as the minimum fractional vertex cover also. We also
have seen that the integer matching and integer vertex cover is not the same size on a
triangle, but we’ll show below that the maximum size of a fractional matching is the same
as the minimum size of a fractional vertex cover on all graphs. This will follow from the
strong linear programming duality.

Next we consider the maximum flow problem. You may recall the formulation of max-
imum flow with variables on paths. Given a directed graph G = (V, FE) with nonnegative
capacities ¢, > 0 on the edges, and a source-sink pair s,¢ € V, the flow problem is defined
as a linear program with variables associated with all s — ¢t paths. Let P denote the set of
paths in G from s to t. Now the problem is (using = as a variable name rather than f to
make it more similar to our other linear programs):

xp > 0Oforall PeP
pr < ¢ forallee F

P:ecP
max E Ip
P

The dual of this linear program has variables associated with the edges (the inequalities of
the above system), and has a variable associated with each path P € P. The dual program
then becomes the following.

Yo > Oforallee E
> ye > lforallPeP

main E Cele
e

Notice that since the capacities ¢, are nonnegative, an optimal solution will have y. < 1
for all edges. Now consider an integer solution when gy, is 0 or 1 on all edges, and let
F ={e:y. =1} be the selected set of edges. The constraint on paths requires that all s —¢
path must contain an edge in F, so F' must contain an (s,?) cut, and by minimality, and
optimal solution is then an (s,t)-cut, and its value is exactly the capacity of the cut.

ecP

Lemma 8 Integer optimal solutions to the above dual linear program are in one-to-one cor-
respondence with minimum capacity (s,t)-cuts in the graph.

We know from linear programming duality that the maximum fractional flow has the
same value as the minimum of the dual program. Note that in the case of flows, we have
seen that the integer max flow is equal to the min cut value. Our observation that min-cuts
are the integer solutions of the dual linear program shows that the dual linear program also
has an integer dual solution.

Corollary 9 The above dual of the max-flow problem is guaranteed to have an optimal
solution with variables y integer, and hence the flow linear problem and its dual has the same
optimal solution value.

5 Strong duality of linear programs

We have seen that the primal and dual linear programs have equal values in the max-flow
problem. While not all linear programs solve optimally in integer variables, we’ll see that
the primal and dual linear programs always have equal solution values. This is the main
theorem of linear programming, called strong duality, i.e., that in inequality in the weak
duality theorem is always equal.

Theorem 10 (strong duality) For any linear program defined by matriz A and vectors b
and ¢, if there is a solution x such that Az < b then we have

max(cx : Az < b} =min(yb:y > 0 and yA = c}.

as well as
max(cx :x > 0,Ar < b} =min(yb:y > 0 and yA > c}.

First observe the second statement follows from the first, by simply applying the first to
linear programs with = > 0 as part of the constraint matrix. Second recall that by weak
duality, we know that all solutions z and all solutions y have cx < yb. To prove the equality,
all we have to do is to exhibit a pair of solutions z* and y* such that cz* = y*b. Once we do
this we have that for al solutions x the value cx < y*b = cx* so x* is optimal, and similarly,
for all solutions y we have that yb > cx* = yb*, so y* is optimal.

We will not formally prove this theorem that such an x* and y* must exists, rather will
present a“proof” based on physics principles, that we hope will give good intuition why the
theorem is true without being too complex. We will think of the area P = {z : Az <} as
a physical area enclosing say a small metal ball. The walls of the area are bounded by the
inequalities a;x < b;, and x will denote the location of the ball. We will also imagine that
there a strong magnet “at infinity” in direction of ¢ that is puling the ball, however, the ball
cannot leave the bounding area P.

1. if the ball keeps accelerating in ¢ direction forever, the value of cx will go to infinity as
the ball moves, so max cx = oo.

2. If the ball cannot accelerate forever, it must come to a stop. Let x denote the place it
stops.

3. At this point the ball has a force ¢ on it from the magnet, the walls of the bounding
area must exert force that compensates the magnet’s force. The wall a;x < b; can exert
force in a; direction, so this force can be of the form y;a; for a nonnegative number
y; > 0. The ball stopped, so the forces acting on it sum to 0, so we get c— > . y;a;, = 0.

4. Finally observe that only walls that touch the ball can exert any force on it, so if
a;x <,b; we must have y; = 0.

We claim that the place z* where the ball stops and the vector y* = (yi,...,y},) form
optimal primal and dual solutions.

Lemma 11 The properties listed above that are derived from physical principles, imply that
the place x* where the ball stops and the vector y* = (yi,...,ys,) form optimal primal and
dual solutions.

Proof. First we note that 2* and y* are feasible solutions. The ball is inside the region P, so
Ax* < b by definition. We also have that y* > 0 as the wall holds the ball inside by exerting
force, but is not pulling the ball towards the wall, so y7 > 0 for all 7, and we have seen that
c =),y a; as the forces add up to 0.

Next we want to show that x* is of maximum value cx and y* has minimum value yb.
Recall that all we have to do to show this is to argue that cx® = y * b. To see this consider
the chain of inequalities

cxt = (yA)z* <y (Ax") = ny(alx*) < nybi,

that is true for all feasible solutions z* and y* (the first equality is by ¢ = y*A, the second
by rearranging terms, and the inequality follows as its true term by term: y;(a;z*) < yib;
for all 7, as y; > 0 and a;x* < b;. Now recall the last property, that force can be only exerted
by walls that touch the ball z*. This property implies that y; > 0 only possible if a;z* = b;,
or in other words either yf = 0 or a;z* = b; for all i. In either case y;(a;x*) = y/b;, and so
the last inequality above is actually equal. B

Notice that the chain on inequalities is true for all feasible vectors z and feasible dual
solutions y. The argument we just went through can be used to recognize a pair of optimal
solutions.

Corollary 12 For a solution x of Ax < b and a vector y > 0 that satisfies c = yA, x and y
are optimal solutions of the linear program and its dual if and only if for each i either y; = 0
or a;x = b;. Or put it differently, x and y are optimal solutions of the linear program and
its dual if and only if for all i we have y;(b; — a;x) = 0.

6 The ellipsoid method

Next we will roughly sketch one of the methods for solving linear programs, the ellipsoid
method. This was the first polynomial time algorithm discovered for the problem. Its not
the most efficient practically: practical algorithms either use the simplex method (which may
be exponential in the worst case) or interior point methods. However, the ellipsoid method
is based on a simple geometric idea, and it is the most powerful in the sense of being able
to solve extensions of linear programs also in polynomial time.

The basis idea of the ellipsoid method is the following. Suppose we know that our feasible
region P = {z : Ax < b} is contained in a ball, say the ball B = {z : 2% = ;27 < 1}.
If we also knew that say x; > 0 for all points in P, then P is contained in a half ball
BN {x:z; >0}, which is only half as big as B. Unfortunately, a half-ball is a much more
complex object. The idea is to enclose the half ball in an ellipsoid E. The ellipsoid will
still be smaller than B (tough by much less smaller than the half-ball), it will still contain
the region of our interest P, and be again a simple shape, like a ball, so we will be able to
recurse.

To develop the idea above, we need to find an ellipse £ that encloses the half-ball as

shows in the figure below. Our ellipse will be centered at ¢ = (n+r1, 0,...,0). So the ball B

Figure 2: The ellipse E enclosing the top half of the ball B.

translated be centered at a point ¢ would have definition B(c) = {z : Y .(z; — ¢;)* < 1}.
The ellipse we are interested in is a bit squashed version of this ball defined as F = {z :
n?—1

A Yo mi + (B (2 — 5))? < 1}, where n is the dimension of the space = € R",

Lemma 13 The ellipse E contain the half ball BN {x : 1 > 0}.

Proof. First test two points x = (1,0...,0). This point satisfies the ellipse inequality as

n?—1 s n+1 1 o, n+l n
: — — =1
e 2 (=) = ()

x? = 1. For

Second, consider a point x = (0,2a,...,7,) on the “equator”, i.e. where),

such a point we get

n*—1 5 o n+1 1 , n?-—1 n+l 1 ., n*—1 1

n? n+1 n? n n+1 n? n?
Finally, consider a general point z in the half ball, and let >._, 27 = s* for some value s.
If z; < %H, i.e., the point is below the level of the center, the argument we just used for

the equator works again. For the point is above the center, n+r1 < x7 we use the fact that
1 < V1 — 5% So we get

1 1

n+1

(0= =< (VI=s = —)?

In this case we get a rather complicated expression in s for our bound

n®—1 n+1 1 n?—1 n+1 1
>oal+ (o = —) S st (VI - —)

2 2
n = n—+1 n n n—+1

Maybe the simplest way to show that this is at most 1 is to use calculus to show that the
maximum of this expression on the interval s € [0, 1] occurs at the two ends, and we have
just seen that at s =0 or 1 the valueis 1. B

Next we need to show that our ellipse F indeed has significantly smaller volume that the
ball B, as we hope to claim to make progress by shrinking the volume. To do this, its useful
to remember the expression for the volume of a ball with radius r in n dimension is v, r" for
a constant v that depends on the dimension. For example, in 2 dimension v, = 7, while in
3 dimension 73 = 3m. We are thinking about ellipses of the form Ey = {z : (;)? < 1}. A
ball of radius r is expressed this way with «; = 1/r for all i. More generally, the volume of
the ellipse just defined is V(Ey) = v,/ [[; a;. Using this expression we can get the ratio of

the ellipse E containing the half-ball and the ball.

Lemma 14 The ratio of the volumes of the ellipse E and the ball B is bounded by V(E)/V(B) <
o= 1/4(n+1)

Proof. The ball B has radius 1, so its volume is 7,. In computing the ratio, 7, cancels. In

. . 2__
= = while o for i > 2 we have /%51, So we get

defining the ellipse F we used oy

2

VIE)/V(B) = ()"

. . . ~ o 1
To estimate this expression we can use that 1+z ~ e® for small z, and use that 25 = (1—-5)
1

n2—1

and similarly n?—il =(1+) so we get

V(E)/V(B) ~ 6*1/(TL+1)(61/(712,1))(7171)/2 — o YD) +1/2(n+1) _ ~1/2(n+1)

Being a bit more careful with the small error in the 14 x = e* approximation, decreases the
bound a bit further, but we can get the bound claimed by the lemma. Unfortunately, the
decrease is quite minimal. W

Now we are ready to use the above geometry in an algorithm. To help the presentation, we
will make a number of simplifying assumptions. As we make each assumption, we comment
on how one may be able to solve problems without the assumption, but we will not elaborate
in these further.

1. We will assume that we are looking for is known to be contained in a large ball By =
{z : 2 < R?} for a parameter R. For example, if we know that the variables are
0 < x; < 1 than we can use R = /n. Similarly, if there are upper bounds on the
variables, this implies an upper bound on R. Without any such bound, one would
have to argue that if the maximum of the linear program is not infinite, it occurs in a
bounded region.

2. To simplify the presentation, we will focus on just finding a feasible solution z satisfying
Az < b without a maximization. One can incorporate an objective function of max cz,
for example, by adding a constraint that cz > v and binary searching on the maximum
value of v for which the system remains feasible.

3. Instead of looking for an exact solution of Ax < b, we will be satisfied with an ap-
proximate solution. Assume that we are given an error parameter ¢ > 0. By dividing
the inequalities in Az < b by appropriate constants, we can assume that each entry
in the matrix is at most 1, i.e.,that |a;;| < 1 for all ¢ and j. With this assumption in
place we will accept an x as a solution if for each constraint ¢ it satisfies a;x < b; + €.
However, the algorithm can conclude that no solution exists, assuming the original
system Ax < b has no solution.

Notice that there are cases that it is not clear upfront what this approximate solution
algorithm should output. If there is no solution to Az < b, but there is a solution to
the related system of a;x < b; 4+ € for all ¢ the algorithm can find either answer. In
most applications such an approximate solution is OK. To make the algorithm precise
we would have to do two things. First find a small enough value € > 0 that guarantees
that of Az < b has no solution, than a;x < b; + € for all 7 also has no solution. Second,
we need to show that for a small enough € > 0 a solution z of the approximate system
a;x < b; + € for all 7 can be rounded to become a solution of the original system.

The main idea of the algorithm is to start with the ball in assumption 1 that is known to
contain all solutions. While we have not found a solution, we will have an ellipsoid F; that
contains all solutions. In each iteration, we test the center ¢ of our ellipsoid E;. If ¢ is
an (approximate) solution to our system, we return z = ¢’ and we are done. If ¢’ is not a
solution, than it must violate one of the constraints of the system a;c’ > b; + €. In this case,
all solutions, even all approximate solutions, are in the half of the ellipsoid defined by the
cut through the center of our ellipsoid a;x < a;c¢’. We then define the next ellipsoid E;,; to
contain this half-ellipsoid E; N {z : a;z < a;c'}.

We defined an enclosing ellipsoid for a half-ball, with the ball centered at 0, and the half
defined by one of the coordinate directions. However, now we need this for an ellipsoid with
a different center, and a direction that may not be one of the coordinate directions. While
working out the algebraic expression for this new ellipsoid is a bit complex, the geometric
idea is simple via a geometric steps. To see how this translates to an algebraic expression,
you may want to look at the notes by Santosh Vempala posted in the course web page.

e By translating the space we can assume that any given point c is the origin.

e For an ellipsoid E defined by the inequality »,(a;z;) < 1 we can stretch the coordi-
nates, by using a new coordinate system with y; = a;x;, and the ellipsoid E becomes
the unit ball in the new coordinate system.

e Finally, we want to take a half-space defined by an arbitrary vector ax > 0, rather
than a coordinate direction. To do this, we can again change coordinate systems, by
letting the unit vector in direction a become our first coordinate, and extending this
to an orthogonal system of coordinates for the space.

Using these reductions allows us to take the ellipsoid defined in the beginning of this section
for the unit ball as part of an iterative algorithm. From Lemma 14 we know that the volume
in each iteration decreases by at least a bit. The last question we need to answer is how
many iterations we need before we can conclude. In fact, we need to wonder about how the
algorithm can conclude. It may find that the centers of one of the ellipsoids is a solution,
and hence can terminate. But how does it terminate when there is no solution? The idea
is to note that if Az < b has a solution, than the set of approximate solutions must have a
volume . This is useful, as if we ever find that our ellipsoid FE; at some iteration has volume
smatter than 0 than we can conclude that Az < b cannot have a solution, and hence can
terminate.

Lemma 15 If the system of inequalities {x : Az < b} has a solution, and |a;;| < 1 for all
entries than the volume of the set {x : a;x < b; + € for all i} must be at least § = (2¢/n)".

Proof. Consider a solution x* such that Az* < b. We define a small box around x* as
B(z*) ={z : |z, — x| < ¢€/n for all i}

Observe that all points z € B(z*) must satisfy the approximate inequalities, and the volume
V(B(z*)) is exactly § proving the lemma. W

Theorem 16 Under the simplifying assumptions 1-3 made above, the ellipsoid algorithm

solve the problem of finding a feasible solution to a system of inequalities in n dimension in
O(n?*log(Rn/e) iterations.

Proof. By the 1st assumption we start out with a ball of volume R"™?. By Lemma 14
each iteration decreases the volume of our ellipsoid by a factor of e/2("*1) 5o 2(n + 1)
iterations decrease the volume by a factor of e, i.e., by a constant factor. what is the range
of volume that we need to decrease? we need to go from R™? to (2¢/n)", a range less than
(Rn/e)™. This happens after the volume decreases log((Rn/e)™) = nlog(Rn/epsilon) times
by a constant factor, so overall will take O(n?log(Rn/¢) iterations as claimed. B

7 Linear Programming and Randomized Rounding

As an application of linear programming, we will consider the following disjoint path problem.
Given a directed graph G = (V, E), capacities on the edges ¢, > 0 for e € E, and pairs of

nodes s;,t; € V for i = 1,... k, the problem is to find paths P; from s; to t; that don’t use
any edge e more than c, times. For example, when c. = 1 for all e we are looking for disjoint
paths. There may not be k such paths in GG, so we will try to find as many as possible.

The first natural idea is to reduce the problem to max-flow, but unfortunately, this won'’t
work out so well. To see why, note that the natural reduction would add a supersource s with
edges to each s; with capacity 1, and a supersink ¢ with edges from each ¢; to ¢ with capacity
1, and than find a max-flow from s to t. We have seen that a flow can be decomposed into
paths from s to ¢, with integer capacities, each flow will carry an integer amount of flow,
and with the source and sink edges having capacity 1, each paths will have one unit of flow.
What goes wrong is the pairing of the sources and sinks. There is nothing guaranteeing that
the path starting at s; ends at its pair ¢;, rather than at some other terminal ¢;. In fact, this
approach cannot as finding disjoint paths (when ¢, = 1 for all e) is an NP-complete problem.
Here we will find a close to optimal solution when the capacities are high enough.

The high level idea is to take advantage that linear programs can be solved in polynomial
time. The above paths problem can be formulated as an integer problem. We solve a
fractional version, and then will want to use the fractional solution to get an integer solution.
The most natural way to formulate the path problem is to have a variable xp associated
with every paths. Let P; denote the set of paths in G from s; to t;. Then we write

> 0 for all P € U;P;
pr < ¢ foralleec F

1 for all ¢

gk
5
A

The inequality for the edges enforces the capacities, the other set of inequalities is asking
to select at most one total of the paths between any source and sink. While we didn’t include
the zp < 1 constraint, this is implied by the inequality that is asking to select at most one
total of the paths between any source and sink. So integer solutions will have xp either 0 or
1, and we can think of the paths P with xp = 1 as being selected.

Lemma 17 Integer solutions to the above inequalities are in one-to-one correspondence to
paths that satisfy the capacity constraints.

However, unlike maximum flow, this linear program does not solve in integers, the opti-
mal solution will result in fractional values. Before we start thinking about how to use the
solution to this linear program, we need to worry if we can solve it at all. The problem is
that the linear program as stated can have exponentially many variables, one for each paths.
We will give a compact, polynomial size version by using the traditional flow formulation
with flows on edge, but doing this separately for each edge e. We’ll use variables f;(e) to
denote the amount of flow from s; to ¢; on edges e, that is f;(e) = Zpen-:eep Tp.

v

0 for all e € E and all ¢
c.forallec F

fi(e)
Zfz‘(e)

Z fi(e) — Z file) = Oforalliandallv eV, v#s,t;

€ enters U € leaves v

>, file)= D file)

€eenters 1; € leaves t;

max Y Y 0 Y e

i e enters l; € leaves t;

IA

1 for all ¢

IN

We have a separate set of flow conservation constraints for each flow f;, a bound of 1 on
flow between any given source-sink paths, a joint capacity constraint founding the total flow
>, fi(e), and the goal is to maximize the total flow. The advantage of this linear program is
its compact size. For a graph with n nodes and m edges, we have mk nonnegative variables,
and m + nk constraints. Integer solutions to this linear program also are solutions to the
original path problem. Its not hard to see that in an integer solution the set of edges with
fi(e) = 1 for a given index i can form cycles and possibly a single path from s; to ¢;. Cycles
do not contribute to the objective value, and path contribute 1. So ignoring the possible
cycles in a solution, we get the following.

Lemma 18 Integer solutions to the new inequalities correspondence to paths that satisfy the
capacity constraints with the number of paths equal to the objective value.

Further, we have seen that an edge-flow can be converted to be a path flow of equal value,
so any (fractional) solution to the second linear program can be converted to a solution to
the first linear program in polynomial time. Recall, the way we get around the exponential
number of variables is that our solution will have most of them set to 0, and will define the
solution by listing the non-zero values only.

Lemma 19 The two linear programs have the same optimal value, and a solution to one
can be converted to a solution to the other in polynomial time. The resulting solution of the
path flow linear program will have only polynomially many paths with nonzero xp wvalues.
Further, the linear programming optimum value is at least as high as the mazimum number
of paths that can be selected.

Now suppose we have a solution to our path flow linear program. The next question is,
how is this useful to find real paths. The idea is to use the variables xp for all P € P; as
probabilities. For each 7 independently, we want to select at most one path from s; to t;,
selecting a given (s;,t;) path with probability zp. This is possible as

Zl’pél

PeP;

Note that if we have a strict inequality here, with some probability we will not select any
(s;,t;) path. There are some basic facts we can get about this selection method using linearity
of expectation.

Lemma 20 The expected number of paths selected by our random selection is Y p,xp , and
the expected number of paths using any edge e is at most c. for each e.

Proof. A path P contributes to the expected number of path by its probability of being
selected, so the expected number of path overall, by linearity of expectation is Y, zp as
claimed. The expected number of paths using an edge e is). . p 2p, Which is bounded by
ce. by our capacity constraint. Wl

We would like to show that the number of paths on any edge is below its capacity high
probability. This simply won’t be true if the expectation is an high as c.. To help with this,
we need to modify the algorithm to use (1 — €)xp as the probability of selecting path P for
all P. This decreases the expected number of paths selected by a factor of (1 —€), but allows
us to bound the probability that the number of paths exceeds c. on any edge.

Lemma 21 If the expected number of paths on an edge e is at most (1—€)ce, and (1 —¢€)c, >
2¢=2logm than the probability that there are more paths than c. using edge e is at most 1/m?.

Proof. We use Chernoff bound. Focusing on edge e let X; = 1 of the s; to ¢; path selected
uses edge e. By construction, the X; variables are 0/1 and independent, and the number of
paths using e is X = >, X;. Also note that E(X) < (1—¢)c., which we can call p = (1—¢€)c,
and (1 +¢e)u = (1 — €?)ce < ce, S0 we get
—0.5¢2 —e€)c 1
Pr(X > c.) < (e705)Imeee < g
as claimed. W

Theorem 22 Assuming that all capacities c. > € 2logm, then the above randomized round-
ing method, solving the linear program, using (1 — €')xp for some ¢ > 0 as probabilities
independently for each i, finds a solution to the path problem with high at high probability
(say probability at east 3/4) using a number of path no less than a factor 1 — O(€) less than
the optimal.

Proof. We have seen by Lemma 19 that the expected number of paths using this method
is at least (1 — €’) times the optimal. For each edge, Lemma 21 shows that, we can get the
probability of a single violated very low: Pr(X > ¢.) < 5. Let X(e) denote the number of
paths on edge e. Using Lemma 21 and the union bound for all edges, we get

1 1
Prob(3e : X, > ¢.) < Z Prob(X, > c.) < m-— = —.
m m

Similarly, the probability that the total number of paths is below (1—¢’) times its expectation
can also be bounded by # due to the lower bound version of the Chernoff bound. Using the
union bound on these two events, the probability that the method has (1 — €)? ~ (1 — 2¢)
times the maximum possible number of path, and all edges have at most ¢, paths is at least

1 — L — = which is high enough assuming the graph is not too small. W

