Algorithms Problem Set 2
CS 6820 Fall 2009 Due October 2, 2009

Recall the general instructions for handing in homework:

e If possible, please typeset the homework (i.e. format your solutions as an electronic file using
latex or Word with mathematical notation).

e Homework solutions done electronically can be handed in by directly uploading them to CMS.
Please mail Ashwin (ashwin85@cs.cornell.edu) if you have any trouble with this.

(a) An instance of the grid solitaire (b) A solution to this instance.
puzzle.

Figure 1: An instance of the grid solitaire puzzle.

(1) Consider the following grid solitaire puzzle, shown in Figure 1(a). We create a grid by having
n vertical lines cross n horizontal lines, creating a set of square cells. (The lines cross in the style
of a “tic-tac-toe” board, so the cells on the sides have “open” boundaries.) Each line gets chopped
into n + 1 short line segments by the lines crossing it in the other direction — we call these short line
segments the segments of the grid. Note that each cell of the grid is bordered by some of the segments;
the cells on the sides of the grid are bordered by either 2 or 3 segments, while the cells in the interior
are all bordered by 4 segments.

Now we write one of the numbers 0, 1, 2, 3, or 4 inside each cell. The problem is to decide whether
it’s possible to take some of the segments of the grid and shade them in, as in Figure 1(a), in such a
way that the number of shaded segments bordering each cell is equal to the number written inside it.
Such a choice of shaded segments is called a solution to the instance of the puzzle.

Give a polynomial-time algorithm that takes an n x n instance of this grid solitaire puzzle and
either produces a solution or reports (correctly) that no solution exists.

(2) Consider the following cube solitaire puzzle. You are given a pile of n wooden cubes. Each cube
has a six faces, and there is a number between 1 and n written on each face. Your goal is to decide
whether it’s possible to arrange the cubes in a line so that the numbers on the faces pointing upward
consist of the numbers 1,2,3,...,n in order. (So your choices consists both of how to order the cubes,
and also which face of each cube to choose as the face that points upward.) Such an arrangement is
considered a solution of the puzzle.

Give a polynomial-time algorithm that takes an instance of this cube solitaire puzzle and either
produces a solution or reports (correctly) that no solution exists.



(3) Suppose you have an electronic document Dy, and n alternate versions of it Dy, Ds,..., D,
that each differ from the original version Dy. (Think for example of a set of variants of a Wikipedia
article.) For each pair of documents D; and D;, you have an edit script that, when applied to Dj,
produces D;. In this question, we won’t be concerned with how these edit scripts are specified, except
to note that some are longer than others: the length of the edit script transforming D; to D; has
length #;;. Here are two observations about the lengths of edit scripts.

e It can easily be the case that ¢;; # ¢;;. (For example, perhaps D; consists of D; plus an extra
paragraph, in which case the edit script transforming D; to D; needs only specify where to delete
some of the lines, whereas the edit script transforming D; to D; needs to include the text of this
extra paragraph.)

e On the other hand, you can assume that the lengths satisfy an asymmetric version of the triangle
inequality: £;; < £, + 1, since one way to transform D; into D; would be to first transform it

into Dy, and then transform Dy, into Dj.

You've been asked to store Dy together with enough information so that all of the versions
Dy, ..., D, can be reconstructed if necessary. You've decided to do this by building the following
kind of reconstruction tree: it will be a rooted tree, with Dy as the root and Dq,..., D, as the other
nodes; and for each edge of the tree that connects a parent D; to a child D;, you’ll store the edit script
transforming D; into D; on the edge from D; to D;. The complezity of the reconstruction tree is the
sum of the lengths of all the edit scripts stored on the edges.

Give a polynomial-time algorithm that takes the documents and the edit scripts, and produces a
reconstruction tree whose complexity is as small as possible.

(4) Consider defining a function f(-) on the subsets of U = {1,2,...,n} as follows. We specify a
list of sets A, Ag,..., Ay C U, and for any S C U, we define f(S) to be the number of sets among
Ay, ..., Ay, that are subsets of S. In other words, f(S) = [{i : A; € S}|. Notice that although f(-) is
defined on all subsets, it has a succinct description via the sets Aq,..., Ap,.

Give a polynomial-time algorithm that takes the function f(-) (described in the input by the set
Ay, ..., Ap), and decides whether there is a set S for which f(S) > |S|.

(5) (KT Exercise 7.27) Some of your friends with jobs out West decide they really need some
extra time each day to sit in front of their laptops, and the morning commute from Woodside to Palo
Alto seems like the only option. So they decide to carpool to work.

Unfortunately, they all hate to drive, so they want to make sure that any carpool arrangement
they agree upon is fair, and doesn’t overload any individual with too much driving. Some sort of
simple round-robin scheme is out, because none of them goes to work every day, and so the subset of
them in the car varies from day to day.

Here’s one way to define fairness. Let the people be labeled S = {p1,...,pr}. We say that the
total driving obligation of p; over a set of days is the expected number of times that p; would have
driven, had a driver been chosen uniformly at random from among the people going to work each
day. More concretely, suppose the carpool plan lasts for d days, and on the i** day a subset S; C S
of the people will be going to work. Then the above definition of the total driving obligation A; for
pj can be written as A; = Zi:pje s, ﬁ Ideally, we’d like to require that p; drives at most A; times;
unfortunately, A; may not be an integer.

So let’s say that a driving schedule is a choice of a driver for each day — i.e. a sequence
Div»Pisy- -+ Diy With p;, € Sy — and that a fair driving schedule is one in which each p; is chosen
as the driver on at most [A;] days.

(a) Prove that for any sequence of sets Sy, ..., Sy, there exists a fair driving schedule.

(b) Give an algorithm to compute a fair driving schedule in time polynomial in k and d.



