Lecture 5: Sept 6, 2021
Lecturer: Eshan Chattopadhyay

1 Lower bound on randomness for k-wise independence

Let D be any k-wise independent distribution on $\{0,1\}^{n}$. Define $D(x)=\operatorname{Pr}[D=x]$ and

$$
\sup (D)=\left\{x \in\{0,1\}^{n}: D(x)>0\right\}
$$

We claim that $|\sup (D)| \geq n^{k / 2}$. In particular, this means that we need $\geq \frac{1}{2} k \log n$ random bits to generate D. Compare this to our construction!

Proof. For brevity, let $S=\sup (D)$. View the distribution as a real valued function $D: S \rightarrow \mathbb{R}^{+}$. Let

$$
V=\{f: S \rightarrow \mathbb{R}\}
$$

be the vector space of functions from S to \mathbb{R}. Clearly $\operatorname{dim}(V)=|S|$, since the collection of indicator functions $\left\{e_{y}\right\}_{y \in S}$ given by

$$
e_{y}(x):= \begin{cases}1 & \text { if } x=y \\ 0 & \text { else }\end{cases}
$$

is a basis for V.
Define an inner product $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{R}$ by

$$
\langle f, g\rangle:=\mathbb{E}_{x \sim D}[f(x) \cdot g(x)]=\sum_{x \in S} D(x) f(x) g(x)
$$

We can easily verify that it is an inner product; for any $\alpha, \beta \in \mathbb{R}$ and $f_{1}, f_{2}, g \in V$, we have

$$
\begin{aligned}
\left\langle\alpha f_{1}+\beta f_{2}, g\right\rangle=\sum_{x \in S} D(x) & \left(\alpha f_{1}+\beta f_{2}\right) g(x) \\
& =\alpha \sum_{x \in S} D(x) f_{1}(x) g(x)+\beta \sum_{x \in S} D(x) f_{2}(x) g(x)=\alpha\left\langle f_{1}, g\right\rangle+\beta\left\langle f_{2}, g\right\rangle
\end{aligned}
$$

and similarly for the second coordinate. It is also clear that

$$
\langle f, f\rangle=\sum_{x \in S} D(x) f(x)^{2} \geq 0
$$

since $D(x) \geq 0$, with equality if and only if $f(x)=0$ for all $x \in \sup (D)$ (i.e. if $f=0$).
Next we define a collection of $|S|$ orthogonal functions in V with respect to the inner product. For all subsets $T \subseteq[n]$ with $|T| \leq k / 2$, define $\chi_{T}: S \rightarrow \mathbb{R}$ by

$$
\chi_{T}(x):=\prod_{i \in T}(-1)^{x_{i}}
$$

recalling that $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in\{0,1\}^{n}$ is an n-tuple. We claim that the collection $\left\{\chi_{T}\right.$: $T \subseteq[n],|T| \leq k / 2\}$ is orthogonal. To see this, select distinct $T_{1}, T_{2} \subseteq[n]$ with $\left|T_{1}\right|,\left|T_{2}\right| \leq k / 2$. Expanding the definition of the inner product gives

$$
\left\langle\chi_{T_{1}}, \chi_{T_{2}}\right\rangle=\mathbb{E}_{x \sim D}\left[\chi_{T_{1}}(x) \chi_{T_{2}}(x)\right]=\mathbb{E}_{x \sim D}\left[\prod_{i \in T_{1}}(-1)^{x_{i}} \prod_{j \in T_{2}}(-1)^{x_{j}}\right]
$$

Observe that the terms with $i \in T_{1} \cap T_{2}$ will cancel each other out; in particular, we have

$$
\mathbb{E}_{x \sim D}\left[\prod_{i \in T_{1}}(-1)^{x_{i}} \prod_{j \in T_{2}}(-1)^{x_{j}}\right]=\mathbb{E}_{x \sim D}\left[\prod_{i \in T_{1} \Delta T_{2}}(-1)^{x_{i}}\right]
$$

Now note that $\left|T_{1} \Delta T_{2}\right| \leq\left|T_{1}\right|+\left|T_{2}\right| \leq \frac{k}{2}+\frac{k}{2}=k$. Since D is k-wise independent, we have

$$
\mathbb{E}_{x \sim D}\left[\prod_{i \in T_{1} \Delta T_{2}}(-1)^{x_{i}}\right]=\left[\prod_{i \in T_{1} \Delta T_{2}} \mathbb{E}_{x_{i} \sim D_{i}}(-1)^{x_{i}}\right]=0
$$

as D_{i}, the marginal distribution of D on the i-th component, is uniform on $\{0,1\}$.
Since the collection $\left\{\chi_{T}\right\}$ is orthogonal, its cardinality provides a lower bound on the dimension of V. In particular,

$$
|S|=\operatorname{dim}(V) \geq\binom{ n}{k / 2} \geq n^{k / 2}
$$

Remark 1.1. In fact, there are explicit constructions which show that this bound is tight.

2 Pseudorandom Generators

The motivating idea behind pseudorandom generators is to provide a derandomization black-box for algorithm design.

Definition 2.1. A family of pseudorandom generators (PRG) is given by the collection

$$
\left\{G_{n}:\{0,1\}^{s(n)} \rightarrow\{0,1\}^{n}\right\}_{n \in \mathbb{N}}
$$

Definition 2.2. A family (class) of Boolean functions is

$$
\mathcal{F}=\bigcup_{n \geq 0} F_{n}, \quad F_{n} \subseteq\left\{f:\{0,1\}^{n} \rightarrow\{0,1\}\right\}
$$

Definition 2.3. For $\varepsilon=\varepsilon(n)$, we say that $\left\{G_{n}\right\}$ is an $\varepsilon-P R G$ for the Boolean family $\left\{F_{n}\right\}$ with seed length $s(n)$ if for all $n \geq 0$ and $f \in F_{n}$,

$$
\left|\mathbb{E}\left[f\left(U_{n}\right)\right]-\mathbb{E}\left[f\left(G_{n}\left(U_{s(n)}\right)\right)\right]\right|<\varepsilon(n)
$$

Computing PRGs

We say that A is mildly explicit if A runs in $\operatorname{poly}\left(n, 2^{s(n)}\right)$. (This is sufficient for our purposes, since our derandomization technique is to run G on all $2^{s(n)}$ inputs.)
We say that A is strongly (or fully) explicit if A runs in poly $(n, S(n)$). (This one is necessary for cryptographic purposes.)

Example 2.4. (k-Juntos) For fixed $n \geq 1$, and consider the collection of functions $F_{n} \subseteq\{f$: $\left.\{0,1\}^{n} \rightarrow\{0,1\}\right\}$ which depends on at most k input bits. Denote this family by $F^{k-J u n t a}$. We claim that k-wise independence fools $F^{k \text {-Junta }}$.
Indeed, if $f \in F_{n}$ for some $n \geq 1$, we have

$$
\mathbb{E}\left[f\left(U_{n}\right)\right]=\mathbb{E}\left[f\left(G_{n}\left(U_{s(n)}\right)\right)\right]
$$

since f ignores all but k bits (by its membership in F_{n}).

