
CS 6815: Pseudorandomness and Combinatorial Constructions Fall 2022

Lecture 4: Sep 01, 2022

Lecturer: Eshan Chattopadhyay Scribe: Jenny Chen

4.1 Max-Cut Problem

The Max-Cut Problem is described as the following: given an undirected, unweighted graph G =
(V,E), want to find a cut S ⊆ V which maximizes cut(S) = {(u, v) ∈ E| exactly one of u, v is in
S}.

The corresponding decision problem is: Given a undirected and unweighted graph G = (V,E)
and an integer k, we want to know whether there exist a cut S which cut(S) ≥ k. This is well-known
to be NP-complete.

We give a simple randomized 1/2-approximation algorithm for the Max-Cut Problem.

Algorithm 4.1. Given input G = (V,E), for each v ∈ V , we place v in S with a probability of 1/2
(each decision is made independently).

Clearly the algorithm runs in O(n) time and requires n random bits. Now we claim that this
algorithm is indeed a 1/2-approximation algorithm for the Max-Cut Problem.

Claim 4.2. Given G = (V,E) and the result S from the algorithm above, E[|cut(S)|] ≥ 1/2|cut(S∗)|,
where S∗ is the optimal solution for G.

Proof
Let

1e=(u,v) =

{
1 if e ∈ cut(S)

0 otherwise
(1)

|cut(S)|=
∑

e∈E 1e

For each individual 1e, E[1e] = Pr[Exactly one of u, v ∈ S] = 1
2 ∗

1
2 + 1

2 ∗
1
2 = 1

2

Therefore, E[|cut(S)|] =
∑

e∈E E[1e] = |E|
2 by linearity of expectation. �

A natural question to ask is if one could remove the randomness used in the algorithm to get a
deterministic 1/2-approximation algorithm. Notice that E[1e] is equivalent to Er∼{0,1}n [size(G, r)]
if we add the randomness r into the equation, where the size(G, r) = |cut(S)|. Therefore, we know

that ∃r ∈ {0, 1}n such that size(G, r) ≥ |E|2 .
One naive way to derandomize is algorithm is to sample all possible r. However, this is the

same as trying all the subsets of V and compare their cuts. This is not helpful at all since it runs
in O(2n) (and also finds the optimal set). Then the question becomes, how can we find a small
subset of the r’s to search over.

We can expand the equation we used for E[1e] a little bit. Say we sample X ∼ D →
(x1, x2, ..., xn) where D is some arbitrary distribution. Follow the algorithm we have above, we
let node vi ∈ S iff xi = 1. Then E[1e] = Pr[(xu = 0 ∧ xv = 1) ∨ (xu = 1 ∧ xv = 0)]. Notice how we
are only examine the relationships between two literals instead of all of them. So we actually did
not use the ”full power” of complete randomness. So our derandomization is the following:

1

Lecture 4: Sep 01, 2022 2

Algorithm 4.3. Given input G = (V,E), we use l = log(n+1) random bits to sample D ∼ {0, 1}n
which is pairwise independent (using the algorithm we discussed in lecture 3). Then we sample
X ∼ D → (x1, x2, ..., xn) and let node vi ∈ S iff xi = 1. There’re a total of 2l possible combinations
of random bits, and we brute force all of them and take the one set S with the largest cut.

Claim 4.4. We claim that for this derandomized algorithm EX∼D[|cut(S)|] ≥ |E|2 .

Proof
The proof is basically the same as the proof we have for the randomized algorithm.

E[1e] = Pr[(xu = 0 ∧ xv = 1) ∨ (xu = 1 ∧ xv = 0)]

= Pr[(xu = 0 ∧ xv = 1)] + Pr[(xu = 1 ∧ xv = 0)]

= 1
2 ∗

1
2 + 1

2 ∗
1
2 = 1

2 by the definition of pairwise independence.

E[|cut(S)|] =
∑

e∈E E[1e] = |E|
2 . And since we pick the largest one from all 2l samples, we know

|size(S)| ≥ |E|2 (otherwise the mean cannot reach |E|2).�

Using the properties of pairwise independence, instead of brute force all 2n subsets, we only
need to brute force over 2l choices of random bits. Since l = log(n + 1), we reduce the number of
times from O(2n) to n + 1.

4.2 K-wise Independence

As we saw above, in many cases, one can use limited independence instead of using completely
uniform bits. We now give a randomness efficient way of generating k-wise independent distributions
(defined below).

Definition 4.5. X1, X2, ..., XN are k-wise independent random variables if for each Xi ∼ [M],
∀distinct i1, i2, ..., ik,Pr[Xi1 = xi1 ∧Xi2 = xi2 ∧ ... ∧Xik = xik] = 1

Mk .

The construction for k-wise independent distribution is the following:

Let N = 2n (for simplicity let M = N), F = FN

• Sample ~a = (a0, a1, ..., ak−1) ∼ F (this uses k ∗ log(N) bits)

• Define univariate polynomial P~a(x) =
∑k−1

i=0 aix
i and output distribution D ∼ P~a(0), P~a(1), ..., P~a(N−

1), where we evaluate all elements in F. Each P~a(i) represents the random variable Xi.

Note how this construction is a generalization to the pairwise independence. When k = 2, we get
exactly P~a(x) = ax + b.

Proof
Xi = P~a(i), let i1, i2, ..., ik be distinct field elements. We want to show that Pr[Xi1 = xb1∧Xb2 =

xb2 ∧ ... ∧Xbk = xbk] = 1
Mk , where bi’s are arbitrary field elements.

Pr[Xi1 = xb1 ∧Xb2 = xb2 ∧ ... ∧Xbk = xbk]

Lecture 4: Sep 01, 2022 3

= Pr[∀kj=1P~a(ij) = bj]

= Pr

1 i1 i21 ... ik−11

1 i2 i22 ... ik−12
...

...
...

...
...

1 ik i2k ... ik−1k

a0
a1
...

ak−1

 =

b1
b2
...
bk

The k × k matrix (say M) here is called the Vandermonde matrix, and it’s determinant is
det(M) =

∏
1≤i≤j≤n(xj − xi), which is non-zero if all xi’s are distinct. Since all ij ’s are distinct

from our assumption, det(M) 6= 0, and M is an invertible matrix. Therefore, M~a = ~b has a unique
solution here. With the similar logic we used to prove pairwise independence, Pr[Xi1 = xb1∧Xb2 =
xb2 ∧ ... ∧Xbk = xbk] = 1

Mk . �
For this construction, under the domain of [N]N , note that the support size is just ≤ Nk. Thus,

It significantly reduces the randomness we use. I k is constant, Nk is within polynomial level. Then
we may want to know how optimal is this construction. That is to say, can we do better than Nk?

Claim 4.6. For any k-wise independent distribution D on {0, 1}n, |support(D)| ≥ nb
k
2
c

We will supply a proof in the next lecture.

	Max-Cut Problem
	K-wise Independence

