Fall 2022
Lecture 21: Nov 3, 2022
Lecturer: Mohit Gurumukhani
Scribe: Ricky Shapley

1 Review of notation

A d-regular undirected graph G on n vertices, has spectral gap $\gamma=1-\lambda$. It has an associated random walk matrix $M=\frac{1}{d} A_{G}$, where A_{G} is the adjacency matrix for G.

2 Graph reduction

Given an algorithm \mathcal{A} that is correct with probability $3 / 4$, uses m random bits, and runs in time T, how can we leverage this algorithm to reduce the error to 2^{-k} ?

Naively, we can run \mathcal{A} many times and take the majority, but this takes $O(T k)$ time and $O(m k)$ random bits. With pairwise independence, we can use only $O(m+k)$ random bits, but need $O\left(T 2^{k}\right)$ time. Expander graphs will allow us to do better, achieving a runtime of $O(T k)$ and $O(m k)$ random bits.

We start with an expander graph with nodes from the set $V=\{0,1\}^{m}$. We randomly choose a starting point v_{1} (this takes m random bits), then do a random walk for $t-1$ steps, arriving at vertices v_{2}, \ldots, v_{t}. Note that this requires an additional $\log (d)$ random bits for each step.

First, we will prove a result for algorithms with 1 -sided error (RP).
Theorem 2.1 (Hitting property of random walks). For all $B \subseteq V$, let $\mu_{B}=\frac{|B|}{n}$ be the density of B. Then for a random walk v_{1}, \ldots, v_{t},

$$
\operatorname{Pr}\left[\bigvee_{i=1}^{t} v_{i} \in B\right] \leq\left(\mu_{B}+\lambda\left(1-\mu_{B}\right)\right)^{t}
$$

3 Proof of hitting property

Let P be the $n \times n$ diagonal matrix with $P_{i i}=1$ if $i \in B$, and $P_{i i}=0$ otherwise.
Claim 3.1.

$$
\operatorname{Pr}\left[\bigvee_{i=1}^{t} v_{i} \in B\right]=\left|u P(M P)^{t-1}\right|
$$

where u is the uniform vector with $u_{i}=1 / n$.
Proof. We prove a similar statement: the probability that the first t steps of the random walk are all in B and the t th vertex is i is given by $\left(u P(M P)^{t-1}\right)_{i}$. Note that this directly implies our claim. We will prove this by induction on t.

When $t=1$, if $i \in B$, then $(u P)_{i}=1 / n$ which is the probability we desire. Similarly, if $i \notin B$, $(u P)_{i}=0$.

Now if we assume the statement holds for $t-1$, then $\left(u P(M P)^{t-2} \cdot M\right)_{i}$ is the probability we are in vertex i on the t th step and all $t-1$ vertices were in B. We multiply by P to ensure we only have positive probability if i is in B. So we find that $\left(u P(M P)^{t-1}\right)_{i}$ the probability that all t vertices are in B and the last vertex is i.

3.1 Matrix decomposition

We will now look at some related ideas that will help us finish proving the theorem.
Definition 3.2. We say the spectral norm of a matrix A is

$$
\|A\|=\max _{x \in \mathbb{R}^{n}} \frac{\|x A\|_{2}}{\|x\|_{2}}
$$

It is easy to confirm the following properties of the spectral norm:

- $\|c A\|=c\|A\|$
- $\|A B\| \leq\|A\|\|B\|$
- $\|A+B\| \leq\|A\|+\|B\|$
- $\|x A\|_{2} \leq\|x\|_{2}\|A\|$

Lemma 3.3 (Matrix decomposition). For random walk matrix M on graph G with spectral gap $\gamma=1-\lambda$,

$$
M=\gamma J+\lambda E
$$

where J is the matrix with all entries equal to $1 / n$, and $\|E\| \leq 1$.
Proof. Let $E=\frac{1}{\lambda}(M-\gamma J)$. For any vector v, we can decompose it as $v=v_{1}+v_{2}$, where $v_{1}=\left\langle v_{1}, u\right\rangle u$ and $v_{2}=v-v_{1}$. (Note that $\left.v_{2} \perp u\right)$.

Then

$$
\begin{aligned}
v_{1} E & =\left\langle v_{1}, u\right\rangle u E \\
& =\frac{\left\langle v_{1}, u\right\rangle}{\lambda}(u M-\gamma u J) \\
& =\frac{\left\langle v_{1}, u\right\rangle}{\lambda}(u-\gamma u) \\
& =\frac{\left\langle v_{1}, u\right\rangle}{\lambda}(u \lambda)=\left\langle v_{1}, u\right\rangle u=v_{1} .
\end{aligned}
$$

And $v_{2} E=\frac{1}{\lambda}\left(v_{2} M-\gamma v_{2} J\right)$. First, we see that $v_{2} J=0$, since $v_{2} \perp u$. Then

$$
\begin{aligned}
\left\langle v_{2} E, u\right\rangle & =\frac{1}{\lambda}\left(v_{2} M u^{T}\right) \\
& =\frac{1}{\lambda}\left(v_{2} u^{T}\right)=0,
\end{aligned}
$$

so $v_{2} E \perp u$ (and also $v_{2} E \perp v_{1}$). We also have that

$$
\begin{aligned}
\left\|v_{2} E\right\|_{2} & =\frac{1}{\lambda}\left\|v_{2} M\right\|_{2} \\
& \leq \frac{1}{\lambda} \lambda\left\|v_{2}\right\|_{2}=\left\|v_{2}\right\|_{2}
\end{aligned}
$$

because $v_{2} \perp u$ which is the eigenvector corresponding to the largest eigenvalue. So v_{2} is scaled by at most the second largest eigenvalue, λ.

Combining the above results, we get that

$$
\begin{aligned}
\|v E\|_{2}^{2} & =\left\|v_{1} E+v_{2} E\right\|_{2}^{2} \\
& =\left\|v_{1} E\right\|_{2}^{2}+\left\|v_{2} E\right\|_{2}^{2} \\
& \leq\left\|v_{1}\right\|_{2}^{2}+\left\|v_{2}\right\|_{2}^{2}=\|v\|_{2}^{2}
\end{aligned}
$$

which by the definition of the spectral norm, $\|E\| \leq 1$.
Now we can use this matrix decomposition to make some progress.

Claim 3.4.

$$
\|P M P\| \leq \mu_{B}+\lambda\left(1-\mu_{B}\right)
$$

Proof. We just use the decomposition on M and do algebra.

$$
\begin{aligned}
\|P M P\| & =\| P(\gamma J+\lambda E \| \\
& \leq \gamma\|P J P\|+\lambda\|P E P\| \\
& \leq \gamma\|P J P\|+\lambda\|P\|\|E\|\|P\| \\
& \leq \gamma\|P J P\|+\lambda
\end{aligned}
$$

since both P and E have norms bounded by 1 .
Now consider any vector x. let $y=x P$. Then since $y J=\left(\sum_{i} y_{i}\right) u$

$$
\begin{array}{rlr}
\|x P J P\|_{2} & =\|y J P\|_{2} \\
& =\left\|\left(\sum_{i} y_{i}\right) u P\right\|_{2} \\
& \leq\left|\sum_{i} y_{i}\right| \cdot\|u P\|_{2} & \\
& =\left|\left\langle 1_{B}, x\right\rangle\right| \cdot\|u P\|_{2} & \\
& \leq \sqrt{\mu_{B} n}\|x\|_{2} \cdot \sqrt{\mu_{B} / n} \quad & \\
& =\mu_{B}\|x\|_{2} &
\end{array}
$$

where we use the fact that P (and y) have at most $\mu_{B} n$ non-zero entries. Since this is true for all $x,\|P J P\| \leq \mu_{B}$. And so,

$$
\|P M P\| \leq \gamma \mu_{B}+\lambda=\mu_{B}+\lambda\left(1-\mu_{B}\right)
$$

Now, we can finally finish the proof of the hitting property. Here, we make use of the fact that $P(M P)^{t}=P(P M P)^{t}$ because $P=P^{2}$.

$$
\begin{aligned}
\left|u P(M P)^{t-1}\right| & \leq \sqrt{\mu_{B} n} \cdot\left\|u P(P M P)^{t-1}\right\|_{2} \\
& \leq \sqrt{\mu_{B} n} \cdot\|u P\|_{2}\|P M P\|^{t-1} \\
& \leq \sqrt{\mu_{B} n} \sqrt{\mu B / n}\left(\mu_{B}+\lambda\left(1-\mu_{B}\right)\right)^{t-1} \\
& =\mu\left(\mu_{B}+\lambda\left(1-\mu_{B}\right)\right)^{t-1} \\
& \leq\left(\mu_{B}+\lambda\left(1-\mu_{B}\right)\right)^{t}
\end{aligned}
$$

4 Chernoff bound for expanders

To extend our result for 2 -sided error ($\mathbf{B P P}$), we need the following theorem.
Theorem 4.1. Given a graph G on n vertices, let $f:[n] \rightarrow[0,1]$ be any function. For a random walk v_{1}, \ldots, v_{t}, we have

$$
\operatorname{Pr}\left[\left|\frac{1}{t} \sum_{i} f\left(v_{i}\right)-\mathbb{E} f\right| \geq \lambda+\epsilon\right] \leq 2 e^{-\Omega\left(\epsilon^{2} t\right)} .
$$

Due to time, we did not cover the proof, but it is theorem 4.22 in the Pseudorandomness book.

5 Final remarks

If we want to reduce λ, (for example to reduce the bias from the above theorem and use expanders to sample f,) we can take an expander G raised to some power k, and our λ becomes λ^{k}. But this also increases our degree bound from d to d^{k}, which means we need more random bits for each step in our random walk.

A final distinction on expanders and how explicit they must be. One notion is a mildly explicit expander, which means we can construct the expander in $\operatorname{poly}(n)$ time. But this is bad in our application, because $n=2^{m}$, so this actually requires exponential time and space. Since we only care about the neighbors, we can instead use fully explicit expanders, which allow you to find the i th adjacent vertex in $O(\log n)$ time.

