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1 Introduction

Expander graphs are graphs that are both sparse and well connected. By sparse we mean that they
have O(N) edges (where N is the number of edges in the graph). There are several different (yet
connected) definitions of well connected which we will see thoroughout the lecture.

2 Vertex Expansion

For the duration of the lecture, we will be considering directed D-regular graphs.

Definition 2.1. For a graph G = (V,E), we define the neighbor set of a vertex u ∈ V as N(u) =
{v : (u, v) ∈ E}. We define the neighbor set of a set of vertices S ⊆ V as N(S) =

⋃
u∈S N(u).

Definition 2.2. G is a (K,A) vertex expander if for all S ⊆ V such that |S| ≤ K, |N(S)| ≥ A|S|.

Notice that the property that |S| ≤ K is necessary because otherwise A = 1 (because then we
can have the case where S = V ).

Intuitively, a G is a vertex expander if when we look at a subset of vertices S, we can always
reach more vertices if we take a step from inside the set S.

Remark 2.3. Edge expansion is very similar, it just requires you to think about the neighbors as
the edges you can reach quickly form S rather than the vertices you can reach quickly from S.

Ideally, we would like D = O(1), A ≈ D − 1 and K = Ω(N).
We can show the existence of expanders by the probabilistic method.
However, we will cheat slightly and show the existence of bipartite expanders. A bipartite

expander only requires that the expansion property only hold for subsets in the left side of the
graph. We will also only require that the graph is left D-regular.

Theorem 2.4. for all D = O(1), there exists an α = O(1) such that a random left D-regular
bipartite digraph is an (αN,D − 1.1) vertex expander with high probability.

Let us consider the probability that for a fixed set S with |S| = k that a random bipartite graph
violates the expansion property. In other words that |N(S)| ≤ (D − 1.1)K.

Notice that for |N(S)| ≤ DK − 1.1K, there must be at least 1.1K repetitions in the edges that
repeat a node, go to a node which has already been reached by a previous edge.

The probability that a given edge goes to a node that has been covered by a previous edge is
bounded above by KD

N . Thus, the probability that a given set of edges cover 1.1K or more already

covered nodes is bounded above by (KD
N )1.1K . Furthermore, there are

(
N

1.1K

)
choices for the edges

which will be repetitions. Thus, for a given S, the probability that there will be 1.1K or more
repetitions is upper bounded by

(
N

1.1K

)
(KD

N )1.1K .
Now we will look at the probability that there exists any S with |S| = k, which violates the

expansion property.
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P[∃S, |S| = K, |N(S)| ≤ (D − 1.1)K]

By the union bound this is

≤
(
N

K

)(
N

1.1K

)
(
KD

N
)
1.1K

By the approximation for the binomial we can see that the above is less than or equal to

≤ (
eN

K
)K(

eKD

1.1K
)1.1K(

KD

N
)1.1K

= (
e2.1D2.2

1.11.1
K0.1

N0.1
)K

By making α very small, we can make K arbitrarily small, thus we can make the following less
than or equal to

≤ 11−K

Finally, we can arrive at the probability that the expansion property is not violated for any set
of size less than K as less than or equal to

αN∑
i=1

11−1 ≤ 0.1

Thus with high probability (at least 90%) our graph is an expander. Thus, it exists.

3 Spectral Expansion

Definition 3.1. M is the random walk matrix of a graph G if Mi,j =
number of edges from i to j

D .

Mi,j can be thought of as the probability you go from to node j if you are at node i and choose
to travel along one of the edges with equal probability.

let πππ = [p1, p2, . . . , pn], where pi is the probability that you are at node i.
(πππM)i is then the probability that you are at node i after taking a random step in the graph

having been in node x with probability px previously.
let u be the vector that represents the uniform distribution on vertices, u = [ 1N , 1

N , . . . , 1
N ]

Then we can define the expansion of the graph as

λ(G) = max
x⊥u

∥xM∥
∥x∥

Remark 3.2. Usually xMn (the distribution after taking n steps in the graph) converges to a
stationary distribution.

λ(G) can be thought of as how fast you converge to the uniform distribution for any π. We will
now see why.

π = u+ x, observe that u ⊥ x since ∥x∥ = 0
Therefore πM = (u+ x)M = u+ xM and we know that ∥xMt∥ ≤ λ(G)t∥x∥. So how quickly

the distribution converges to the uniform distribution is dependent in xMt which is bounded by
λ(G). So λ(G) tells us how quickly the distribution converges to uniform.
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Remark 3.3. If you take an undirected graph and let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of M ,
then λ(G) = λ2.

Theorem 3.4. Spectral expansion implies vertex expansion. More precisly, for α ∈ [0, 1], G is a
(αN, 1

(1−α)λ2+α
) vertex expander.

Notice that if λ < 1, you have 1
(1−α)λ2+α

> 1, which means we have expansion. Otherwise, we

do not.

4 Mixing

Definition 4.1. A graph G has the mixing property if for 2 sets S and T where |S| = αN and

|T | = βN , e(S,T )
ND ≈ αβ. e(S, T ) is the number of edges between S and T .

Notice that in a random graph, you would expect the mixing property to hold.

Theorem 4.2. Spectral Expansion implies Mixing. More precisely | e(S,T )
ND −αβ| ≤ λ

√
αβ(1− α)(1− β)

or the more useful bound | e(S,T )
ND − αβ ≤

√
αβ

Note that if λ ≈ 0, then the density between S and T is very close to αβ.

Remark 4.3. Vertex expansion with strong parameters implies spectral expansion. In fact, to a
certain degree any of the 3 definitions of expansion given in this lecture imply the other 2.

We will now present the proof that mixing implies spectral expansion
1S = [11,12, . . . ,1n], where 1i = 1 if and only if i ∈ S.

e(S, T ) = 1
T
SA1T

Where A is the adjacency matrix of M . A = DM . Therefore

e(S, T ) = 1
T
SDM1T

The above is true because the left hand side is equal to the following∑
i,j

(1S)i(DM)i,j(1T )j

Notice that the expression expression in the sum gives the number of edges between i and j if
i is in S and j is in T , and zero otherwise. Thus the sum gives the total number of edges between
S and T .

Recall from linear algebra that we can write any vector v as kv + v⊥, where k =
∑

vi.
Using this fact, we can rewrite out expression as

(αNv + (1⊥S ))
TDM(βNv + (1⊥T ))

T

Expanding and combing terms we get

αβN2DvTMv
1

N
+ ((1S)

⊥)TDM(1T )
⊥

= αβN2D
1

N
+ ((1S)

⊥)TDM(1T )
⊥
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The first term now simplifies to αβND. All that remains is to bound the error term ((1S)
⊥)TDM(1T )

⊥.
By Cauchy-Swartz

((1S)
⊥)TDM(1T )

⊥ ≤ ∥(1S)⊥∥∥DM1
⊥
T ∥

≤ λD∥1⊥S ∥∥1⊥T ∥

By Pythagoras, we know ∥1⊥S ∥ =
√

α(1− α)N . Thus we have

≤ λD
√
α(1− α)N

√
β(1− β)N

= λND
√
α(1− α)β(1− β)
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