CS 6815: Pseudorandomness and Combinatorial Constructions

Fall 2022
Lecture 20: Nov 1, 2022
Lecturer: Jyun-Jie Liao
Scribe: Surendra Ghentiyala

1 Introduction

Expander graphs are graphs that are both sparse and well connected. By sparse we mean that they have $O(N)$ edges (where N is the number of edges in the graph). There are several different (yet connected) definitions of well connected which we will see thoroughout the lecture.

2 Vertex Expansion

For the duration of the lecture, we will be considering directed D-regular graphs.
Definition 2.1. For a graph $G=(V, E)$, we define the neighbor set of a vertex $u \in V$ as $N(u)=$ $\{v:(u, v) \in E\}$. We define the neighbor set of a set of vertices $S \subseteq V$ as $N(S)=\bigcup_{u \in S} N(u)$.

Definition 2.2. G is a (K, A) vertex expander if for all $S \subseteq V$ such that $|S| \leq K,|N(S)| \geq A|S|$.
Notice that the property that $|S| \leq K$ is necessary because otherwise $A=1$ (because then we can have the case where $S=V$).

Intuitively, a G is a vertex expander if when we look at a subset of vertices S, we can always reach more vertices if we take a step from inside the set S.

Remark 2.3. Edge expansion is very similar, it just requires you to think about the neighbors as the edges you can reach quickly form S rather than the vertices you can reach quickly from S.

Ideally, we would like $D=O(1), A \approx D-1$ and $K=\Omega(N)$.
We can show the existence of expanders by the probabilistic method.
However, we will cheat slightly and show the existence of bipartite expanders. A bipartite expander only requires that the expansion property only hold for subsets in the left side of the graph. We will also only require that the graph is left D-regular.

Theorem 2.4. for all $D=O(1)$, there exists an $\alpha=O(1)$ such that a random left D-regular bipartite digraph is an $(\alpha N, D-1.1)$ vertex expander with high probability.

Let us consider the probability that for a fixed set S with $|S|=k$ that a random bipartite graph violates the expansion property. In other words that $|N(S)| \leq(D-1.1) K$.

Notice that for $|N(S)| \leq D K-1.1 K$, there must be at least $1.1 K$ repetitions in the edges that repeat a node, go to a node which has already been reached by a previous edge.

The probability that a given edge goes to a node that has been covered by a previous edge is bounded above by $\frac{K D}{N}$. Thus, the probability that a given set of edges cover $1.1 K$ or more already covered nodes is bounded above by $\left(\frac{K D}{N}\right)^{1.1 K}$. Furthermore, there are $\binom{N}{1.1 K}$ choices for the edges which will be repetitions. Thus, for a given S, the probability that there will be 1.1 K or more repetitions is upper bounded by $\binom{N}{1.1 K}\left(\frac{K D}{N}\right)^{1.1 K}$.

Now we will look at the probability that there exists any S with $|S|=k$, which violates the expansion property.

$$
\mathbb{P}[\exists S,|S|=K,|N(S)| \leq(D-1.1) K]
$$

By the union bound this is

$$
\leq\binom{ N}{K}\binom{N}{1.1 K}\left(\frac{K D}{N}\right)^{1.1 K}
$$

By the approximation for the binomial we can see that the above is less than or equal to

$$
\begin{gathered}
\leq\left(\frac{e N}{K}\right)^{K}\left(\frac{e K D}{1.1 K}\right)^{1.1 K}\left(\frac{K D}{N}\right)^{1.1 K} \\
=\left(\frac{e^{2.1} D^{2.2}}{1.1^{1.1}} \frac{K^{0.1}}{N^{0.1}}\right)^{K}
\end{gathered}
$$

By making α very small, we can make K arbitrarily small, thus we can make the following less than or equal to

$$
\leq 11^{-K}
$$

Finally, we can arrive at the probability that the expansion property is not violated for any set of size less than K as less than or equal to

$$
\sum_{i=1}^{\alpha N} 11^{-1} \leq 0.1
$$

Thus with high probability (at least 90%) our graph is an expander. Thus, it exists.

3 Spectral Expansion

Definition 3.1. \boldsymbol{M} is the random walk matrix of a graph G if $\boldsymbol{M}_{i, j}=\frac{\text { number of edges from } i \text { to } j}{D}$.
$\mathbf{M}_{i, j}$ can be thought of as the probability you go from to node j if you are at node i and choose to travel along one of the edges with equal probability.
let $\boldsymbol{\pi}=\left[p_{1}, p_{2}, \ldots, p_{n}\right]$, where p_{i} is the probability that you are at node i.
$(\boldsymbol{\pi} \mathbf{M})_{i}$ is then the probability that you are at node i after taking a random step in the graph having been in node x with probability p_{x} previously.
let \mathbf{u} be the vector that represents the uniform distribution on vertices, $\mathbf{u}=\left[\frac{1}{N}, \frac{1}{N}, \ldots, \frac{1}{N}\right]$
Then we can define the expansion of the graph as

$$
\lambda(G)=\max _{\mathbf{x} \perp \mathbf{u}} \frac{\|\mathbf{x} \mathbf{M}\|}{\|\mathbf{x}\|}
$$

Remark 3.2. Usually $\boldsymbol{x} \boldsymbol{M}^{\boldsymbol{n}}$ (the distribution after taking n steps in the graph) converges to a stationary distribution.
$\lambda(G)$ can be thought of as how fast you converge to the uniform distribution for any π. We will now see why.
$\pi=\mathbf{u}+\mathbf{x}$, observe that $\mathbf{u} \perp \mathbf{x}$ since $\|\mathbf{x}\|=0$
Therefore $\pi \mathbf{M}=(\mathbf{u}+\mathbf{x}) \mathbf{M}=\mathbf{u}+\mathbf{x} \mathbf{M}$ and we know that $\left\|\mathbf{x} \mathbf{M}^{t}\right\| \leq \lambda(G)^{t}\|\mathbf{x}\|$. So how quickly the distribution converges to the uniform distribution is dependent in $\mathbf{x} \mathbf{M}^{t}$ which is bounded by $\lambda(G)$. So $\lambda(G)$ tells us how quickly the distribution converges to uniform.

Remark 3.3. If you take an undirected graph and let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ be the eigenvalues of M, then $\lambda(G)=\lambda_{2}$.

Theorem 3.4. Spectral expansion implies vertex expansion. More precisly, for $\alpha \in[0,1], G$ is a $\left(\alpha N, \frac{1}{(1-\alpha) \lambda^{2}+\alpha}\right)$ vertex expander.

Notice that if $\lambda<1$, you have $\frac{1}{(1-\alpha) \lambda^{2}+\alpha}>1$, which means we have expansion. Otherwise, we do not.

4 Mixing

Definition 4.1. A graph G has the mixing property if for 2 sets S and T where $|S|=\alpha N$ and $|T|=\beta N, \frac{e(S, T)}{N D} \approx \alpha \beta . e(S, T)$ is the number of edges between S and T.

Notice that in a random graph, you would expect the mixing property to hold.
Theorem 4.2. Spectral Expansion implies Mixing. More precisely $\left|\frac{e(S, T)}{N D}-\alpha \beta\right| \leq \lambda \sqrt{\alpha \beta(1-\alpha)(1-\beta)}$ or the more useful bound $\left\lvert\, \frac{e(S, T)}{N D}-\alpha \beta \leq \sqrt{\alpha \beta}\right.$

Note that if $\lambda \approx 0$, then the density between S and T is very close to $\alpha \beta$.
Remark 4.3. Vertex expansion with strong parameters implies spectral expansion. In fact, to a certain degree any of the 3 definitions of expansion given in this lecture imply the other 2.

We will now present the proof that mixing implies spectral expansion
$\mathbb{1}_{S}=\left[\mathbb{1}_{1}, \mathbb{1}_{2}, \ldots, \mathbb{1}_{n}\right]$, where $\mathbb{1}_{i}=1$ if and only if $i \in S$.

$$
e(S, T)=\mathbb{1}_{S}^{T} A \mathbb{1}_{T}
$$

Where A is the adjacency matrix of $M . A=D M$. Therefore

$$
e(S, T)=\mathbb{1}_{S}^{T} D M \mathbb{1}_{T}
$$

The above is true because the left hand side is equal to the following

$$
\sum_{i, j}\left(\mathbb{1}_{S}\right)_{i}(D \mathbf{M})_{i, j}\left(\mathbb{1}_{T}\right)_{j}
$$

Notice that the expression expression in the sum gives the number of edges between i and j if i is in S and j is in T, and zero otherwise. Thus the sum gives the total number of edges between S and T.

Recall from linear algebra that we can write any vector v as $k v+v^{\perp}$, where $k=\sum v_{i}$.
Using this fact, we can rewrite out expression as

$$
\left(\alpha N v+\left(\mathbb{1} \frac{\perp}{S}\right)\right)^{T} D \mathbf{M}\left(\beta N v+\left(\mathbb{1}_{T}^{\perp}\right)\right)^{T}
$$

Expanding and combing terms we get

$$
\begin{aligned}
& \alpha \beta N^{2} D v^{T} \mathbf{M} v \frac{1}{N}+\left(\left(\mathbb{1}_{S}\right)^{\perp}\right)^{T} D \mathbf{M}\left(\mathbb{1}_{T}\right)^{\perp} \\
& \quad=\alpha \beta N^{2} D \frac{1}{N}+\left(\left(\mathbb{1}_{S}\right)^{\perp}\right)^{T} D \mathbf{M}\left(\mathbb{1}_{T}\right)^{\perp}
\end{aligned}
$$

The first term now simplifies to $\alpha \beta N D$. All that remains is to bound the error term $\left(\left(\mathbb{1}_{S}\right)^{\perp}\right)^{T} D \mathbf{M}\left(\mathbb{1}_{T}\right)^{\perp}$. By Cauchy-Swartz

$$
\begin{gathered}
\left(\left(\mathbb{1}_{S}\right)^{\perp}\right)^{T} D \mathbf{M}\left(\mathbb{1}_{T}\right)^{\perp} \leq\left\|\left(\mathbb{1}_{S}\right)^{\perp}\right\|\left\|D \mathbf{M} \mathbb{1}_{T}^{\perp}\right\| \\
\leq \lambda D\left\|\mathbb{1}_{S}^{\perp}\right\|\left\|\mathbb{1}_{T}^{\perp}\right\|
\end{gathered}
$$

By Pythagoras, we know $\left\|\mathbb{1} \frac{\perp}{S}\right\|=\sqrt{\alpha(1-\alpha) N}$. Thus we have

$$
\begin{aligned}
& \leq \lambda D \sqrt{\alpha(1-\alpha) N} \sqrt{\beta(1-\beta) N} \\
& \quad=\lambda N D \sqrt{\alpha(1-\alpha) \beta(1-\beta)}
\end{aligned}
$$

