Lecture 18: October 25, 2022

Lecturer: Eshan Chattopadhyay
Scribe: Jenny Chen, Tomas Alvarez

1 Introduction

Recall the following claim from the previous lecture:
Definition 1.1 (Sampler). Samp : $\{0,1\}^{n} \rightarrow[M]^{D}$ is a (k, ϵ, δ)-sampler if for all functions f : $[M] \rightarrow[0,1]$, and for all (n, k)-sources X,

$$
\operatorname{Pr}\left[\left|\frac{1}{D} \sum_{i=1}^{D} f\left(y_{i}\right)-\mu(f)\right|>\epsilon\right]<\delta
$$

where $\left(y_{1}, \cdots, y_{D}\right)=\operatorname{Samp}(x)$ for $x \sim X$.
We propose a construction of a (k, ϵ, δ)-sampler based on extractors. We start with a $\left(k^{\prime}, \epsilon^{\prime}\right)$ extractor Ext: $[N] \times[D] \rightarrow[M]$ where the constants k^{\prime} and ϵ^{\prime} remain to be determined. We say that $G_{\text {Ext }}=([N] \cup[M], E)$ is the bipartite graph on $[N] \cup[M]$ with edges $e=(x, z) \in E$ if $\exists y$ such that $\operatorname{Ext}(x, y)=z$. We refer to the neighbors of x as $N(x)$ and the proposed construction is $\operatorname{Samp}(x)=N(x)$.

We make use of the following two sets

$$
\begin{aligned}
& \text { Bad }^{+}=\left\{x \in\{0,1\}^{n}: \frac{1}{D} \sum_{y \in N(x)} f(y)-\mu(f)>\epsilon\right\} \\
& \text { Bad }^{-}=\left\{x \in\{0,1\}^{n}: \frac{1}{D} \sum_{y \in N(x)} f(y)-\mu(f)<-\epsilon\right\}
\end{aligned}
$$

Claim 1.2. $\left|B a d^{+}\right|,\left|B a d^{-}\right|<2^{k^{\prime}}$.
Proof. The proof is the same for both sets so we only prove it for $B a d^{+}$. Suppose for contradiction that $\left|B a d^{+}\right| \geq 2^{k^{\prime}}$. Let X^{+}be a flat distribution on $B a d^{+}$. There are at least $2^{k^{\prime}}$ elements and X^{+} is flat so $H_{\infty} \geq k^{\prime}$. Since we have $H_{\infty} \geq k^{\prime}$. and an $\left(k^{\prime}, \epsilon^{\prime}\right)$ extractor, then $\operatorname{Ext}\left(X^{+}, U_{d}\right) \approx_{\epsilon^{\prime}} U_{m}$. Let us now denote $\operatorname{Ext}\left(X^{+}, U_{d}\right)$ by z^{+}. Because X^{+}is the set of x 's such that the sampled mean is larger than the true mean by ϵ we know $\left.\left.\mathbb{E}\left[f\left(z^{+}\right)\right)\right]-\mathbb{E}\left[f\left(U_{m}\right)\right]=\mathbb{E}\left[f\left(z^{+}\right)\right)\right]-\mu(f)>\epsilon$. Since $z^{+} \approx_{\epsilon^{\prime}} U_{m}$ we use the following fact from last lecture: $\left.\mid \mathbb{E}\left[f\left(z^{+}\right)\right)\right]-\mu(f) \mid<2 \epsilon^{\prime}$. If we choose $\epsilon^{\prime}=\epsilon / 2$ then we have the inequality $\left.\mathbb{E}\left[f\left(z^{+}\right)\right)\right]-\mu(f)>\epsilon$ and $\left.\mid \mathbb{E}\left[f\left(z^{+}\right)\right)\right]-\mu(f) \mid<2 \epsilon^{\prime}=\epsilon$ which is a contradiction. Thus, $\left|B a d^{+}\right|,\left|B a d^{-}\right|<2^{k^{\prime}}$.

Notice that if $x \in B a d^{+}$or $x \in B a d^{-}$then $\left|\frac{1}{D} \sum_{i=1}^{D} f\left(y_{i}\right)-\mu(f)\right|>\epsilon$ by definition. Thus, $\operatorname{Pr}\left[\left|\frac{1}{D} \sum_{i=1}^{D} f\left(y_{i}\right)-\mu(f)\right|>\epsilon\right]=\operatorname{Pr}\left[x \in B a d^{+} \cup B a d^{-}\right] \leq \frac{2 \cdot 2^{k^{\prime}}}{2^{k}}$. Therefore, if we let $k^{\prime}=k-$ $\log (1 / \delta)-1$ we get $\frac{2 \cdot 2^{k^{\prime}}}{2^{k}}<\delta$ which implies that this is a (k, ϵ, δ)-sampler.

2 Construction of Seeded Extractors

Recall the existential bound of a (strong) seeded extractor Ext: $[N] \times[D] \rightarrow[M]$, which is a (k, ϵ) extractor:

- $m=k-2 \log \left(\frac{1}{\epsilon}\right)-O(1)$
- $d=\log (n-k)+2 \log \left(\frac{1}{\epsilon}\right)+O(1)$

This is the parameter we can reach with a random seeded extractor. We're going to show an explicit construction that uses $O(n)$ seed length but can extract a good amount of randomness from the weak source.

Construction 2.1. Take a universal hash family $\mathcal{H}=\{h:[N] \rightarrow[M]\}$ of size D. Recall that the hash functions satisfy the following property: $\operatorname{Pr}_{h \sim \mathcal{H}}[h(x)=h(y)] \leq \frac{1}{M}, \forall x \neq y$. Define the extractor as $\operatorname{Ext}(x, h)=h(x)$.

In other words, the extractor gets a seed and use it to pick a hash function. Then it gets a sample from the weak source and apply the hash function to the sample. Since the number of random bits we need to sample such functions is at least $n, d=O(n)$ here.

Before we prove the construction gives a valid (k, ϵ) extractor, we need to talk about the collision probability first.

Definition 2.2. (Collision Probability) Let Y be a distribution on a set T such that $|T|=A$. $C P(Y)=\operatorname{Pr}\left[Y=Y^{\prime}\right]$, such that Y^{\prime} is an independent copy of $Y . \quad C P(Y)=\operatorname{Pr}\left[Y=Y^{\prime}\right]=$ $\sum_{y \in T} \operatorname{Pr}[Y=y]^{2}=\|Y\|_{2}^{2}$.
$C P(Y)$ equals to the L 2 norm of Y, and if we have a uniform distribution on T, then $C P\left(U_{T}\right)=$ $\frac{1}{A}$ (since each $\operatorname{Pr}[Y=y]=\frac{1}{A^{2}}$ and there are a total of A such y 's).
Claim 2.3. If $C P(Y) \leq \frac{1}{A}(1+\epsilon)$, then $\left|Y-U_{m}\right| \leq \frac{1}{2} \sqrt{\epsilon}$ (the statistical distance).
Proof. From Cauchy-Schwarz inequality, we know $\forall u, v \in \mathbb{R}^{n},<u, v>\leq\|u\|_{2}\|v\|_{2}$. If we pick the $u=\overrightarrow{\mathbb{1}}$ and v be the difference between Y and U_{m}. Then $\|u\|_{2}\|v\|_{2}=\sqrt{A} \cdot\left\|Y-U_{m}\right\|_{2}$. Plug into the inequality we obtain $\left\|Y-U_{m}\right\|_{1} \leq \sqrt{A} \cdot\left\|Y-U_{m}\right\|_{2}$ (1).

We also know that $Y=U_{m}+\left(Y-U_{m}\right)$. And we claim that $\left\langle U_{m}, Y-U_{m}\right\rangle=0$. This inner product equals to the sum of all entries of vector $Y-U_{m}$, which is equivalent to $\sum_{y \in T} \operatorname{Pr}[Y=$ $y]-\sum_{y \in T}\left[U_{m}=y\right]$. Since the sum of the probability of all points in the distribution is simply 1 , $\sum_{y \in T} \operatorname{Pr}[Y=y]-\sum_{y \in T}\left[U_{m}=y\right]=1-1=0$. So we know U_{m} and $Y-U_{m}$ are orthogonal to each other. Using Pythagorean theorem, $\|Y\|_{2}^{2}=\left\|U_{m}\right\|_{2}^{2}+\left\|Y-U_{m}\right\|_{2}^{2}(2)$.

Square both sides of (1) and plug in (2), we get $\left\|Y-U_{m}\right\| \leq A\left(\|Y\|_{2}^{2}-\left\|U_{m}\right\|_{2}^{2}\right)=A(C P(Y)-$ $\left.C P\left(U_{m}\right)\right)=A\left(\frac{1}{A}(1+\epsilon)-\frac{1}{A}\right)=\epsilon \Rightarrow\left\|Y-U_{m}\right\| \leq \sqrt{\epsilon}$. By definition, the statistical distance is half of the L1 norm, thus $\left|Y-U_{m}\right| \leq \frac{1}{2} \sqrt{\epsilon}$.

Now we can prove the Leftover Hash Lemma.
Theorem 2.4. (Leftover Hash Lemma). If $\mathcal{H}=\left\{h:\{0,1\}^{n} \rightarrow\{0,1\}^{m}\right\}$ is a pairwise independent family of hash functions, then $\operatorname{Ext}(x, h)=h(x)$ is a strong (k, ϵ)-extractor for any (n, k)-source x.

Proof. Let X be an arbitrary k-source. Essentially, we want to show that $\mathcal{H}(X), \mathcal{H} \simeq_{\epsilon} U_{m}, \mathcal{H}$.

$$
\begin{align*}
C P(\mathcal{H}(X), \mathcal{H}) & =\operatorname{Pr}\left[(H(X), H)=\left(H^{\prime}\left(X^{\prime}\right), H^{\prime}\right)\right] \tag{1}\\
& =C P(H)\left(\left(\operatorname{Pr}_{h \sim H}\left[h(X)=h\left(X^{\prime}\right)\right]\right)\right)=\frac{1}{D}\left(\operatorname{Pr}_{h \sim H}\left[h(X)=h\left(X^{\prime}\right)\right]\right) \tag{2}\\
& =\frac{1}{D}\left(\operatorname{Pr}\left[X=X^{\prime}\right]+\operatorname{Pr}_{h \sim H}[h(X)=h(Y) \mid X \neq Y]\right) \tag{3}\\
& =\frac{1}{D}\left(\frac{1}{k}+\operatorname{Pr}_{h \sim H}[h(X)=h(Y) \mid X \neq Y]\right) \tag{4}\\
& =\frac{1}{D}\left(\frac{1}{k}+\frac{1}{M}\right) \tag{5}\\
& =\frac{1}{M D}\left(1+\frac{M}{K}\right) \Rightarrow \epsilon^{\prime}=\frac{M}{K} \tag{6}\\
& \Rightarrow \epsilon=2^{\frac{m-k}{2}-1} \tag{7}
\end{align*}
$$

Line (1) comes from the definition of the collision probability.
In order for $(H(x), H)=\left(H^{\prime}(x), H^{\prime}\right)$ to happen, we need $H=H^{\prime}$. Since there are D hash functions, we get line (2).

For line (3) and (4), if we fix the h, then there are two cases for $h(X)=h\left(X^{\prime}\right)$: either $X=X^{\prime}$ or $X \neq X^{\prime}$ but $h(X)=h\left(X^{\prime}\right)$. The probability of $X=X^{\prime}$ is just the collision probability of X. We know that X is an (n, k)-source, so $C P(X) \leq \frac{1}{K}$ since $H_{\infty}(X) \geq k$.

Line (5) comes from the definition of the hash function: $\operatorname{Pr}_{h \sim H}[h(X)=h(Y) \mid X \neq Y] \leq \frac{1}{M}$.
From those, it follows that $m=k-2 \log (1 / \epsilon)+1$. Not that we used a very large seed to achieve that. Since we need to enumerate over all seeds which has a total of 2^{d} such seeds, we really want a seed length within $O(\log n)$.

