CS 6815: Pseudorandomness and Combinatorial Constructions Fall 2022

Lecture 18: October 25, 2022
Lecturer: Eshan Chattopadhyay Scribe: Jenny Chen, Tomas Alvarez

1 Introduction

Recall the following claim from the previous lecture:

Definition 1.1 (Sampler). Samp : {0,1}" — [M]” is a (k,e¢, d)-sampler if for all functions f :
[M] — [0, 1], and for all (n, k)-sources X,
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where (y1,--- ,yp) = Samp(x) for z ~ X.
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We propose a construction of a (k, €, d)-sampler based on extractors. We start with a (k/,¢€)
extractor Ext: [N] x [D] — [M] where the constants k' and €' remain to be determined. We say
that Gexy = ([N] U [M], E) is the bipartite graph on [N] U [M] with edges e = (z,2) € E if Jy
such that Ext(z,y) = z. We refer to the neighbors of z as N(x) and the proposed construction is
Samp(z) = N(z).

We make use of the following two sets
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Claim 1.2. |Bad*|,|Bad~| < 2¥'.

Proof. The proof is the same for both sets so we only prove it for Bad™. Suppose for contradiction
that |Bad™| > 2%, Let X* be a flat distribution on Bad*. There are at least 2¥ elements and X+t
is flat so Hy > K’. Since we have Ho, > k. and an (¥, €’) extractor, then Ext(X ™, Uy) ¢ Up,.
Let us now denote Ext(X™,Uy) by 2. Because X is the set of ’s such that the sampled mean
is larger than the true mean by € we know E[f(2T))] — E[f(Ux)] = E[f(27))] — u(f) > €. Since
2zt =~ Uy, we use the following fact from last lecture: |E[f(21))] — u(f)| < 2€¢. If we choose
€ = ¢/2 then we have the inequality E[f(zT))] — u(f) > € and [E[f(21))] — u(f)| < 2¢ = € which
is a contradiction. Thus, |Bad"|,|Bad~| < 2¥. O

Notice that if x € Bad® or # € Bad~ then %Zi’;l f(yi) — u(f)| > € by definition. Thus,
Pr {

2k

% S ) - ,u(f)‘ > e} = Prlz € Bad" UBad™] < 22" Therefore, if we let &' = k —

log(1/d) — 1 we get 2'22: < ¢ which implies that this is a (k, €, §)-sampler.
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2 Construction of Seeded Extractors

Recall the existential bound of a (strong) seeded extractor Ext: [N] x [D] — [M], which is a (k, €)
extractor:

e m=k—2log(t)—O(1)
e d=log(n—k)+2log()+0(1)

This is the parameter we can reach with a random seeded extractor. We’re going to show an explicit
construction that uses O(n) seed length but can extract a good amount of randomness from the
weak source.

Construction 2.1. Take a universal hash family H = {h : [N] — [M]} of size D. Recall that
the hash functions satisfy the following property: Prypy[h(x) = h(y)] < ﬁ,VZE # y. Define the
extractor as Ext(x,h) = h(x).

In other words, the extractor gets a seed and use it to pick a hash function. Then it gets a
sample from the weak source and apply the hash function to the sample. Since the number of
random bits we need to sample such functions is at least n, d = O(n) here.

Before we prove the construction gives a valid (k, €) extractor, we need to talk about the collision
probability first.

Definition 2.2. (Collision Probability) Let Y be a distribution on a set 7' such that |T'| = A.
CP(Y) = Pr[Y = Y'], such that Y’ is an independent copy of Y. CP(Y) = Pr[lY =Y'] =
Yyer Priy =y* = |[Y]3.

CP(Y) equals to the L2 norm of Y, and if we have a uniform distribution on 7', then CP(Ur) =

4 (since each Pr[Y = y] = 45 and there are a total of A such y’s).

Claim 2.3. If CP(Y) < &(1+e¢), then |Y — Uy,| < $\/€ (the statistical distance).

Proof. From Cauchy-Schwarz inequality, we know Yu,v € R, < u,v >< ||u||2||v]|2. If we pick the
u =1 and v be the difference between Y and U,,. Then ||u||o||v]]2 = VA - ||Y — Upn||2. Plug into
the inequality we obtain ||Y — Up|l1 < VA« [|Y — Upnll2 (1).

We also know that Y = U, + (Y — U,,). And we claim that < U,,,Y — U, >= 0. This inner
product equals to the sum of all entries of vector Y — U,,, which is equivalent to ZyeT Prly =
yl = > er[Um = y. Since the sum of the probability of all points in the distribution is simply 1,
dyer PrlY =yl =3 crUn =yl =1—-1=0. So we know Uy, and Y — Uy, are orthogonal to
each other. Using Pythagorean theorem, ||Y|3 = ||Un|3 + ||Y — Unll3 (2).

Square both sides of (1) and plug in (2), we get ||Y — Un|| < A(||Y]|2 — ||Unl|3) = A(CP(Y) —
CP(Up)) = A(5(1+€) — %) = €= ||[Y — Upl| < Ve By definition, the statistical distance is half
of the L1 norm, thus |Y — U, | < /e O

Now we can prove the Leftover Hash Lemma.

Theorem 2.4. (Leftover Hash Lemma). If H = {h:{0,1}" — {0,1}"} is a pairwise independent
family of hash functions, then Ext(x,h) = h(z) is a strong (k,€)-extractor for any (n,k)-source x.
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Proof. Let X be an arbitrary k-source. Essentially, we want to show that H(X), H ~¢ Uy, H.

CP(H(X), H) = Pri(H(X), H) = (H'(X'), ') 1)
= CP(H)(PrinlA(X) = H(X'))) = & (Prienlh(X) =h(X)) (2
= L(PrIX = X+ Pryen[h(X) = h(Y)|X # Y)) 3)
= (5 + Prislh(X) = h(V)|X £ Y)) (4)
= S +30) )
= s )= (©
= e=2" "1 (7)

Line (1) comes from the definition of the collision probability.

In order for (H(z),H) = (H'(x),H’) to happen, we need H = H’. Since there are D hash
functions, we get line (2).

For line (3) and (4), if we fix the h, then there are two cases for h(X) = h(X’): either X = X’
or X # X' but h(X) = h(X’). The probability of X = X’ is just the collision probability of X.
We know that X is an (n, k)-source, so CP(X) < + since Hoo(X) > k.

Line (5) comes from the definition of the hash function: Pryg[h(X) =h(Y)|X #Y] < 4. O

From those, it follows that m = k —2log(1/¢) + 1. Not that we used a very large seed to achieve
that. Since we need to enumerate over all seeds which has a total of 2¢ such seeds, we really want
a seed length within O(logn).
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