1 Recap: Seeded Extractors

We say that Ext : $\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$ is a (k, ϵ)-seeded extractor if for all (n, k)-sources X, $\operatorname{Ext}\left(X, U_{d}\right) \approx_{\epsilon} U_{m}$. We saw with using a random construction, we can achieve such extractors with

$$
\begin{aligned}
d & =\log (n-k)+2 \log (1 / \epsilon)+O(1) \\
m & =d+k-2 \log (1 / \epsilon)-O(1) .
\end{aligned}
$$

2 Randomized Algorithms with Weak Sources

Consider some language $L \in \mathbf{B P P}$ with some algorithm \mathcal{A}. Recall that this means for all inputs x,

$$
\operatorname{Pr}_{r \sim U_{m}}[\mathcal{A}(x, r)=L(x)] \geq \frac{9}{10} .
$$

But what if \mathcal{A} only has access to (n, k)-sources? If Y is an (n, k)-source, we want to be able to construct some algorithm \mathcal{A}^{\prime} so that for all inputs x,

$$
\operatorname{Pr}_{y \sim Y}\left[\mathcal{A}^{\prime}(x, y)=L(x)\right] \geq \frac{2}{3} .
$$

Our idea is to try all possible seeds. We will take a seeded extractor Ext : $\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow$ $\{0,1\}^{m}$, where the first input is from our weak source Y. Let $r_{i}=\operatorname{Ext}\left(y, s_{i}\right)$ for all $i \in[D]$ where s_{i} is the i th element in $\{0,1\}^{d}$ under some fixed ordering. Then for each seed, we calculate $z_{i}=\mathcal{A}\left(x, r_{i}\right)$. Let z be the concatenation $z_{1} z_{2} \ldots z_{D}$ and output $\operatorname{Maj}(z)$.

Here, \mathcal{A}^{\prime} runs in $\operatorname{poly}(n) \cdot D$ as long as we can compute Ext in polynomial time. We have D total seeds, and for each seed we need to run \mathcal{A} which is $\operatorname{poly}(n)$ and our extractor, which we assume to also be poly (n).

Theorem 2.1. \mathcal{A}^{\prime} as defined above satisfies

$$
\operatorname{Pr}_{y \sim Y}\left[\mathcal{A}^{\prime}(x, y)=L(x)\right] \geq \frac{2}{3} .
$$

Proof. Fix some input x. Let Bad $=\left\{r \in\{0,1\}^{m}: \mathcal{A}(x, r) \neq L(x)\right\}$. Then by definition of \mathcal{A}, $\frac{|\mathrm{Bad}|}{M} \leq \frac{1}{10}$.

Which $y \in Y$ are bad? Each y can be mapped to D elements in $\{0,1\}^{m}$ when considering all possible seeds. So bad choices for y are those that map a majority of outputs to Bad. We will describe these as

$$
\operatorname{Bad}_{y}=\{y \in \operatorname{supp}(Y):|N(y) \cap \operatorname{Bad}| \geq D / 2\}
$$

where $N(y)=\left\{\operatorname{Ext}\left(y, s_{1}\right), \ldots, \operatorname{Ext}\left(y, s_{D}\right)\right\}$, the set of all possible outputs of y.

Then

$$
\operatorname{Pr}\left[\mathcal{A}^{\prime} \text { fails on } x\right]=\operatorname{Pr}_{y \sim Y}\left[y \in \operatorname{Bad}_{y}\right] \leq \frac{\left|\operatorname{Bad}_{y}\right|}{2^{k}}
$$

because Y is a (n, k)-source.
Now we wish to bound $\left|\operatorname{Bad}_{y}\right|$. Suppose that our extractor Ext is a $\left(k^{\prime}, \epsilon\right)$-seeded extractor. We claim that $\left|\operatorname{Bad}_{y}\right|<2^{k^{\prime}}$.

Suppose for a contradiction $\left|\operatorname{Bad}_{y}\right| \geq 2^{k^{\prime}}$. Let W be a distribution flat on Bad_{y}. So W is a (n, k^{\prime})-source. Then

$$
\operatorname{Pr}\left[\operatorname{Ext}\left(w, U_{d}\right) \in \operatorname{Bad}\right] \geq \frac{1}{2}
$$

for every $w \in W$ by the definition of Bad and so

$$
\operatorname{Pr}\left[\operatorname{Ext}\left(W, U_{d}\right) \in \operatorname{Bad}\right] \geq \frac{1}{2}
$$

And we know

$$
\operatorname{Pr}\left[U_{m} \in \mathrm{Bad}\right] \leq \frac{1}{10}
$$

But this is a contradiction! Our extractor should guarantee that $\operatorname{Ext}\left(W, U_{d}\right)$ is very close to U_{m}, but

$$
\left|\operatorname{Ext}\left(W, U_{d}\right)-U_{m}\right| \geq\left|\operatorname{Pr}\left[\operatorname{Ext}\left(W, U_{d}\right) \in \operatorname{Bad}\right]-\operatorname{Pr}\left[U_{m} \in \operatorname{Bad}\right]\right| \geq \frac{2}{5}
$$

So if we choose an extractor with $\epsilon=1 / 4$, then $\left|\operatorname{Bad}_{y}\right|<2^{k^{\prime}}$. This means

$$
\operatorname{Pr}\left[\mathcal{A}^{\prime} \text { fails on } x\right] \leq \frac{\left|\operatorname{Bad}_{y}\right|}{2^{k}}<2^{k^{\prime}-k}
$$

and we can easily choose our extractor such that the failure probability is sufficiently small.

Note that choosing our seed length to be $d=O(\log (n / \epsilon))$ suffices here - as this means the runtime of our algorithm \mathcal{A}^{\prime} is $\operatorname{poly}(n)$.

3 Sampling

Suppose we have some function $f:\{0,1\}^{m} \rightarrow[0,1]$. We wish to estimate $\mu=\mathbb{E}_{x \sim U_{m}} f(x)$.
The standard method to do this is simple: we take x_{1}, \ldots, x_{D} from U_{m} i.i.d., then compute $\tilde{\mu}=\frac{1}{D} \sum_{i \in[D]} f\left(x_{i}\right)$.

A standard application of the Chernoff bound gives

$$
\operatorname{Pr}[|\mu-\tilde{\mu}|>\epsilon]<\delta
$$

where $\delta=2^{-\Omega\left(\epsilon^{2} D\right)}$, or equivalently $D=O\left(1 / \epsilon^{2} \log (1 / \delta)\right)$.
Definition 3.1 (Sampler). Samp : $\{0,1\}^{n} \rightarrow[M]^{D}$ is a (k, ϵ, δ)-sampler if for all functions f : $[M] \rightarrow[0,1]$ and for all (n, k)-sources X,

$$
\operatorname{Pr}\left[\left|\frac{1}{D} \sum_{i=1}^{D} f\left(y_{i}\right)-\mu(f)\right|>\epsilon\right]<\delta
$$

where $\left(y_{1}, \ldots, y_{D}\right)=\operatorname{Samp}(x)$ for $x \sim X$.

3.1 Construction

We start with a $\left(k^{\prime}, \epsilon^{\prime}\right)$-extractor Ext : $[N] \times[D] \rightarrow[M]$. Consider the natural bipartite graph representation of the extractor. We have $[N]$ nodes on the left, and $[M]$ nodes on the right. We connect a left node $x \in[N]$ to a right node $y \in[M]$ if there is some seed $r \in[D]$ that maps (x, r) to y. This is a left-regular bipartite graph with degree D.

Then $\operatorname{Samp}(x)=N(x)$, the neighbors of x in our graph. Or equivalently, $N(x)$ is the set $\{\operatorname{Ext}(x, r): r \in[D]\}$.

We will defer the proof, but prove a claim that will be useful.
Claim 3.2. Let $z \approx_{\epsilon} U_{m}$, then $|\mathbb{E}[f(z)]-\mu(f)| \leq 2 \epsilon$.
Proof. Using the definition of expectation,

$$
\begin{aligned}
|\mathbb{E}[f(z)]-\mu(f)| & =\left|\sum_{z \in[M]} f(z)\left(\operatorname{Pr}[Z=z]-\operatorname{Pr}\left[U_{m}=z\right]\right)\right| \\
& \leq \sum_{z \in[M]} f(z)\left|\operatorname{Pr}[Z=z]-\operatorname{Pr}\left[U_{m}=z\right]\right| \\
& \leq \sum_{z \in[M]}\left|\operatorname{Pr}[Z=z]-\operatorname{Pr}\left[U_{m}=z\right]\right| \\
& =2\left|z-U_{m}\right| \leq 2 \epsilon
\end{aligned}
$$

where the inequalities follow from the triangle inequality, the boundedness of f, and the definition of statistical distance.

