CS 6815: Pseudorandomness and Combinatorial Constructions

Fall 2022

Lecture 17: Oct 20, 2022

Lecturer: Eshan Chattopadhyay

Scribe: Ricky Shapley

1 Recap: Seeded Extractors

We say that Ext: $\{0,1\}^n \times \{0,1\}^d \to \{0,1\}^m$ is a (k,ϵ) -seeded extractor if for all (n,k)-sources X, $\operatorname{Ext}(X, U_d) \approx_{\epsilon} U_m$. We saw with using a random construction, we can achieve such extractors with

$$d = \log(n - k) + 2\log(1/\epsilon) + O(1)$$

$$m = d + k - 2\log(1/\epsilon) - O(1).$$

2 Randomized Algorithms with Weak Sources

Consider some language $L \in \mathbf{BPP}$ with some algorithm \mathcal{A} . Recall that this means for all inputs x,

$$\Pr_{r \sim U_m}[\mathcal{A}(x, r) = L(x)] \ge \frac{9}{10}.$$

But what if \mathcal{A} only has access to (n, k)-sources? If Y is an (n, k)-source, we want to be able to construct some algorithm \mathcal{A}' so that for all inputs x,

$$\Pr_{y \sim Y}[\mathcal{A}'(x,y) = L(x)] \ge \frac{2}{3}.$$

Our idea is to try all possible seeds. We will take a seeded extractor $\text{Ext} : \{0,1\}^n \times \{0,1\}^d \rightarrow \{0,1\}^m$, where the first input is from our weak source Y. Let $r_i = \text{Ext}(y,s_i)$ for all $i \in [D]$ where s_i is the *i*th element in $\{0,1\}^d$ under some fixed ordering. Then for each seed, we calculate $z_i = \mathcal{A}(x,r_i)$. Let z be the concatenation $z_1 z_2 \ldots z_D$ and output Maj(z).

Here, \mathcal{A}' runs in $poly(n) \cdot D$ as long as we can compute Ext in polynomial time. We have D total seeds, and for each seed we need to run \mathcal{A} which is poly(n) and our extractor, which we assume to also be poly(n).

Theorem 2.1. \mathcal{A}' as defined above satisfies

$$\Pr_{y \sim Y}[\mathcal{A}'(x,y) = L(x)] \ge \frac{2}{3}.$$

Proof. Fix some input x. Let $\mathsf{Bad} = \{r \in \{0,1\}^m : \mathcal{A}(x,r) \neq L(x)\}$. Then by definition of \mathcal{A} , $\frac{|\mathsf{Bad}|}{M} \leq \frac{1}{10}$.

Which $y \in Y$ are bad? Each y can be mapped to D elements in $\{0,1\}^m$ when considering all possible seeds. So bad choices for y are those that map a majority of outputs to Bad. We will describe these as

$$\mathsf{Bad}_y = \{ y \in \operatorname{supp}(Y) : |N(y) \cap \mathsf{Bad}| \ge D/2 \}$$

where $N(y) = \{ \text{Ext}(y, s_1), \dots, \text{Ext}(y, s_D) \}$, the set of all possible outputs of y.

Then

$$\Pr[\mathcal{A}' \text{ fails on } x] = \Pr_{y \sim Y}[y \in \mathsf{Bad}_y] \le rac{|\mathsf{Bad}_y|}{2^k}$$

because Y is a (n, k)-source.

Now we wish to bound $|\mathsf{Bad}_y|$. Suppose that our extractor Ext is a (k', ϵ) -seeded extractor. We claim that $|\mathsf{Bad}_y| < 2^{k'}$.

Suppose for a contradiction $|\mathsf{Bad}_y| \geq 2^{k'}$. Let W be a distribution flat on Bad_y . So W is a (n,k')-source. Then

$$\Pr[\operatorname{Ext}(w, U_d) \in \mathsf{Bad}] \ge \frac{1}{2}$$

for every $w \in W$ by the definition of Bad and so

$$\Pr[\operatorname{Ext}(W, U_d) \in \mathsf{Bad}] \ge \frac{1}{2}$$

And we know

$$\Pr[U_m \in \mathsf{Bad}] \le \frac{1}{10}$$

But this is a contradiction! Our extractor should guarantee that $Ext(W, U_d)$ is very close to U_m , but

$$|\operatorname{Ext}(W, U_d) - U_m| \ge |\operatorname{Pr}[\operatorname{Ext}(W, U_d) \in \mathsf{Bad}] - \operatorname{Pr}[U_m \in \mathsf{Bad}]| \ge \frac{2}{5}$$

So if we choose an extractor with $\epsilon = 1/4$, then $|\mathsf{Bad}_y| < 2^{k'}$. This means

$$\Pr[\mathcal{A}' \text{ fails on } x] \le \frac{|\mathsf{Bad}_y|}{2^k} < 2^{k'-k}$$

and we can easily choose our extractor such that the failure probability is sufficiently small.

Note that choosing our seed length to be $d = O(\log(n/\epsilon))$ suffices here - as this means the runtime of our algorithm \mathcal{A}' is poly(n).

3 Sampling

Suppose we have some function $f: \{0,1\}^m \to [0,1]$. We wish to estimate $\mu = \mathbb{E}_{x \sim U_m} f(x)$.

The standard method to do this is simple: we take x_1, \ldots, x_D from U_m i.i.d., then compute $\tilde{\mu} = \frac{1}{D} \sum_{i \in [D]} f(x_i)$.

A standard application of the Chernoff bound gives

$$\Pr[|\mu - \tilde{\mu}| > \epsilon] < \delta$$

where $\delta = 2^{-\Omega(\epsilon^2 D)}$, or equivalently $D = O(1/\epsilon^2 \log(1/\delta))$.

Definition 3.1 (Sampler). Samp : $\{0,1\}^n \to [M]^D$ is a (k,ϵ,δ) -sampler if for all functions $f : [M] \to [0,1]$ and for all (n,k)-sources X,

$$\Pr\left[\left|\frac{1}{D}\sum_{i=1}^{D}f(y_i) - \mu(f)\right| > \epsilon\right] < \delta$$

where $(y_1, \ldots, y_D) = \operatorname{Samp}(x)$ for $x \sim X$.

3.1 Construction

We start with a (k', ϵ') -extractor Ext : $[N] \times [D] \to [M]$. Consider the natural bipartite graph representation of the extractor. We have [N] nodes on the left, and [M] nodes on the right. We connect a left node $x \in [N]$ to a right node $y \in [M]$ if there is some seed $r \in [D]$ that maps (x, r)to y. This is a left-regular bipartite graph with degree D.

Then $\operatorname{Samp}(x) = N(x)$, the neighbors of x in our graph. Or equivalently, N(x) is the set $\{\operatorname{Ext}(x,r): r \in [D]\}$.

We will defer the proof, but prove a claim that will be useful.

Claim 3.2. Let $z \approx_{\epsilon} U_m$, then $|\mathbb{E}[f(z)] - \mu(f)| \leq 2\epsilon$.

Proof. Using the definition of expectation,

$$|\mathbb{E}[f(z)] - \mu(f)| = \left| \sum_{z \in [M]} f(z)(\Pr[Z = z] - \Pr[U_m = z]) \right|$$

$$\leq \sum_{z \in [M]} f(z) |\Pr[Z = z] - \Pr[U_m = z]|$$

$$\leq \sum_{z \in [M]} |\Pr[Z = z] - \Pr[U_m = z]|$$

$$= 2|z - U_m| \leq 2\epsilon$$

where the inequalities follow from the triangle inequality, the boundedness of f, and the definition of statistical distance.