CS 6815: Pseudorandomness and Combinatorial Constructions

Fall 2022
Lecture 12: Sep 29, 2022
Lecturer: Eshan Chattopadhyay
Scribe: Surendra Ghentiyala

1 Hardness vs. Randomness Definitions

In this lecture, we explore the connection between constructing pseudorandom generators for a class of functions and constructing hard to compute functions against this class.

Definition 1.1. $g:\{0,1\}^{n} \rightarrow\{0,1\}$ is (S, ϵ) hard if for all circuits C of size less or equal to than $S, \operatorname{corr}(g, C) \leq \epsilon\left(i e . \mathbb{P}_{x \sim U_{n}}[g(x)=C(x)] \leq \frac{1}{2}+\epsilon / 2\right)$.

Intuitively, a function g is hard to compute if no "small" circuit can do much better at computing the function than just guessing. This captures the notion of average-case hardness. When we just have the weaker guarantee that $\operatorname{corr}(g, C)<1 / 2$, we just say g is S-hard for C. This weaker guarantee corresponds to worst-case hardness.

Definition 1.2. A generator $G:\{0,1\}^{s(n, \epsilon)} \rightarrow\{0,1\}^{n}$ is (S, ϵ) pseudorandom if for all circuits C of size less than or equal to S, $\left|\mathbb{E}_{x \sim U_{n}}[C(G(x))]-\mathbb{E}\left[C\left(U_{n}\right)\right]\right| \leq \epsilon$.

Intuitively, a generator G is pseudorandom if no "small" circuit can distinguish the outputs of G from truly random bits with significant advantage.

Remark 1.3. We note that S, ϵ are functions of n, and what we really mean by g is actually a series of functions parameterized by n : $\left\{g_{i}\right\}_{i \geq 0}$.

Definition 1.4. Let $L_{n}=\left\{x: g_{n}(x)=1\right\} \subseteq\{0,1\}^{n}$. The language associated with g is $L=$ $\cup_{n \geq 0} L_{n} \subseteq\{0,1\}^{*} . L$ is (S, ϵ) hard if g is (S, ϵ) hard.

2 Pseudorandomness Implies Hardness

Claim 2.1. Let $G:\{0,1\}^{n} \rightarrow\{0,1\}^{n+1}$ be an $(S, \epsilon=1 / 2-\delta)$ pseudorandom generator, for any $\delta>0$. Let $T=G\left(\{0,1\}^{n}\right)$ (the image of G). Define $f:\{0,1\}^{n+1} \rightarrow\{0,1\}$ as follows: $f(x)=1$ if $x \in T$ and $f(x)=0$ if $x \notin T$. f is S hard.

We will show the above by contradiction. We will assume that f is not hard (that there is a series of small circuits that compute it) and then show that this implies that G is not (S, ϵ) pseudorandom.

Proof: Assume that f is not S hard. Let C be the circuit of size $\leq S$ such that $C(x)=f(x)$ for all x. We will now show that C breaks G.

Notice first that $\mathbb{E}\left[C\left(U_{n+1}\right)\right] \leq \frac{1}{2}$ since $\mathbb{E}\left[C\left(U_{n+1}\right)\right]$ is the fraction of strings in $\{0,1\}^{n+1}$ on which the circuit outputs 1 . The circuit only outputs 1 when f outputs one, and f only outputs one when the input string is in the image of G. There are at most 2^{n} strings in the image of G. Thus, the fraction of strings on which the circuit accepts is $\leq \frac{2^{n}}{2^{n+1}}=\frac{1}{2}$. Therefore, $\mathbb{E}\left[C\left(U_{n+1}\right)\right] \leq \frac{1}{2}$.

Secondly, notice that $\mathbb{E}_{x \sim U_{n}}[C(G(x))]=1 . C$ outputs 1 when its input is in the image of G. Clearly, $G(x)$ is in the image of G, thus $C(G(x))$ is always 1 and $\mathbb{E}_{x \sim U_{n}}[C(G(x))]=1$.

Therefore

$$
\begin{gathered}
\left|\mathbb{E}_{x \sim U_{n}}[C(G(x))]-\mathbb{E}\left[C\left(U_{n}\right)\right]\right| \\
=\mathbb{E}_{x \sim U_{n}}[C(G(x))]-\mathbb{E}\left[C\left(U_{n}\right)\right] \\
\geq 1-\frac{1}{2}=\frac{1}{2}
\end{gathered}
$$

This provides the necessary contradiction to our assumption that G is a $(S, 1 / 2-\delta$) pseudorandom generator.

3 Hardness Implies Pseudorandomness

We now prove the more interesting direction.
Claim 3.1. Suppose $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is (S, ϵ) hard. Then $G:\{0,1\}^{n} \rightarrow\{0,1\}^{n+1}$ defined as $G(x)=(x, f(x))$ (where $(x, f(x))$ is x concatenated with $f(x))$ is $\left(S^{\prime}, \epsilon^{\prime}\right)$ pseudorandom, where $\epsilon^{\prime}=\epsilon$ and $S^{\prime}=S-1$.

Like the previous proof, this one will be by contradiction. We will assume that there is a small distinguisher for G and create a small circuit that can compute f.

Proof: Assume there is a curcuit that $C,|C| \leq S^{\prime}$ such that

$$
\begin{gathered}
\mathbb{E}_{x \sim U_{n+1}}[C(G(x))]-\mathbb{E}\left[C\left(U_{n+1}\right)\right]>\epsilon^{\prime} \\
\mathbb{E}_{x \sim U_{n}}[C((x, f(x)))]-\mathbb{E}\left[C\left(U_{n+1}\right)\right]>\epsilon^{\prime}
\end{gathered}
$$

Notice that sampling $n+1$ random bits is the same as sampling n random bits and then sampling 1 random bit and then concatenating them. Therefore the above statement is equivalent to

$$
\begin{gathered}
\mathbb{E}_{x \sim U_{n}}[C((x, f(x)))]-\mathbb{E}_{x \sim U_{n}, b \sim\{0,1\}}[C((x, b))]>\epsilon^{\prime} \\
\mathbb{P}_{x \sim U_{n}}[C((x, f(x)))=1]-\frac{1}{2} \mathbb{P}_{x \sim U_{n}}[C((x, f(x)))=1]-\frac{1}{2} \mathbb{P}_{x \sim U_{n}}[C((x, \overline{f(x)}))=1]>\epsilon^{\prime} \\
\frac{1}{2} \mathbb{P}_{x \sim U_{n}}[C((x, f(x)))=1]-\frac{1}{2} \mathbb{P}_{x \sim U_{n}}[C((x, \overline{f(x)}))=1]>\epsilon^{\prime} \\
\frac{1}{2}\left(\mathbb{P}_{x \sim U_{n}}[C((x, f(x)))=1]-\mathbb{P}_{x \sim U_{n}}[C((x, \overline{f(x)}))=1]\right)>\epsilon^{\prime} \\
\mathbb{P}_{x \sim U_{n}}[C((x, f(x)))=1]-\mathbb{P}_{x \sim U_{n}}[C((x, \overline{f(x)}))=1]>2 \epsilon^{\prime}
\end{gathered}
$$

Therefore, the circuit is more likely to output 1 when $(x, f(x))$ is given as the input than when $(x, \overline{f(x)})$ is given as the input. We will use this observation to design a randomized algorithm A that takes an input x and uses C to compute $f(x)$. Then we will use A to design a circuit C^{\prime} that computes f.

Let us now consider the probability that A successfully computes $f(x)$ on a random x.

$$
\mathbb{P}_{x \sim U_{n}, b \sim\{0,1\}}[A(x)=f(x)]
$$

```
Algorithm 1 A
    \(b \sim\{0,1\}\)
    if \(C((x, b))=1\) then
        return \(b\)
    end if
    return \(\bar{b}\)
```

$$
\begin{aligned}
= & \frac{1}{2} \mathbb{P}_{x \sim U_{n}},[C((x, f(x)))=1]+\frac{1}{2} \mathbb{P}_{x \sim U_{n}},[C((x, \overline{f(x)}))=0] \\
= & \frac{1}{2} \mathbb{P}_{x \sim U_{n}},[C((x, f(x)))=1]+\frac{1}{2} \mathbb{P}_{x \sim U_{n},}[C((x, \overline{f(x)}))=0] \\
= & \frac{1}{2} \mathbb{P}_{x \sim U_{n}}[C((x, f(x)))=1]+\frac{1}{2}\left(1-\mathbb{P}_{x \sim U_{n}},[C((x, \overline{f(x)}))=1]\right) \\
= & \frac{1}{2}+\frac{1}{2}\left(\mathbb{P}_{x \sim U_{n}},[C((x, f(x)))=1]-\mathbb{P}_{x \sim U_{n},}[C((x, \overline{f(x)}))=1]\right)
\end{aligned}
$$

We already show showed above that $\left(\mathbb{P}_{x \sim U_{n},}[C((x, f(x)))=1]-\mathbb{P}_{x \sim U_{n},}[C((x, \overline{f(x)}))=1]\right)>2 \epsilon^{\prime}$. Consequently, the above expression evaluates to

$$
=\frac{1}{2}+\epsilon^{\prime}=\frac{1}{2}+\epsilon
$$

Now we need to turn A into a series of circuits. Let A_{b} be the algorithm A so that rather than sampling the variable b, it has b fixed as b. Observe that since $\mathbb{P}_{x \sim U_{n}, b \sim\{0,1\}}[A(x)=f(x)] \geq \frac{1}{2}+\epsilon$, there must be a bit $b \in\{0,1\}$ such that the $\mathbb{P}_{x \sim U_{n}}\left[A_{b}(x)=f(x)\right] \geq \frac{1}{2}+\epsilon$. So for each circuit in the circuit family that will compute f, we will hard code b so that it is the bit with the aforementioned property.

So, the circuit C^{\prime} will compute and output $C((x, 1))$ if $b=1$ and $\overline{C((x, 0))}$ if $b=0$. This makes C^{\prime} equivalent to A_{b} for the best choice of b.

It is easy to see that the extra computation means that the size of C^{\prime} is $|C|+1$, and thus we contradict our hardness assumption.

4 Nisan-Wigderson PRG

Nisan-Wigderson showed a way to construct a much better PRG from hardness asssumptions. We will discuss this in next class, and provide some intuition here.

We have shown that the assumption of a hard function f allows us to extend n bits to $n+1$ bits. The Nisan-Wigderson PRG goes further and gives us exponential stretch.

On a high level, the PRG G samples $r=\operatorname{poly}(n)$ bits and generates bits $z_{1}, z_{2}, \ldots, z_{m}$ where $m=2^{\Omega(n)}$.

To do so, we fix a set system $S_{1}, S_{2}, \ldots, S_{m} \subseteq[r],\left|S_{i}\right|=n$, and set z_{i} to be $f\left(x_{S_{i}}\right)$
For the construction, we will see that an additional 'design property' is needed on the set system that bounds the pairwise intersection of any two sets:

$$
\forall i \neq j,\left|S_{i} \cap S_{j}\right| \leq \frac{n}{c}
$$

where c is some constant.
We will discuss this in much more detail in the next class.

