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1 Balanced Codes

Recall the definition of an ϵ-biased space:

Definition 1.1 (ϵ-biased space). An ϵ-biased space, or ϵ-biased distribution, is a flat distribution
D over some subset of Fn

2 such that for all S ⊆ [n]:∣∣∣∣ Pr
x∼Un

[χS (x) = 1]− Pr
x∼D

[χS (x) = 1]

∣∣∣∣ ≤ ϵ.

similarly, an ϵ-balanced code can be defined as:

Definition 1.2 (ϵ-balanced code). An ϵ-balanced code, is an (n, k, d)2 code C such that for all
nonzero code words c ∈ C: (

1

2
− ϵ

)
· n ≤ weight(c) ≤

(
1

2
+ ϵ

)
· n.

Observe that if a balanced code is linear, then its distance d ≥ (12 − ϵ) · n since the distance of a
linear code is the minimum hamming weight of a code word. We will now show that ϵ-biased sets
are just ϵ-biased codes in a different guise.

Theorem 1.3. If D is an ϵ-biased distribution over Fk
2 with support size n, then the n×k matrix G

that has the elements of the support of D written as its rows is a generator matrix for an ϵ-balanced
code.

Proof. Take the matrix G as defined above. By the definition of an ϵ-biased distribution, for any
S ⊆ [k], we have: ∣∣∣∣ Pr

x∼Uk

[χS (x) = 1]− Pr
x∼D

[χS (x) = 1]

∣∣∣∣ ≤ ϵ.

Therefore, for any y ∈ Fk
2 such that y ̸= 0, if we take T = {i : yi = 1} and z = Gy then we can

conclude:

weight(z) =

n∑
i=1

Pr[zi = 1] =
∑

x∈supp(D)

Pr[χT (x) = 1] ∈
[(

1

2
− ϵ

)
· n,

(
1

2
+ ϵ

)
· n

]
,

since the sum of n terms each bounded between
[
1
2 − ϵ, 12 + ϵ

]
is going to be bounded in the range

[(12 − ϵ) · n, (12 + ϵ) · n].

If we take n = k2

ϵ2
, then we can obtain an (k

2

ϵ2
, k, k

2

ϵ2
(12 − ϵ)] code with rate = k

n = ϵ2

k . The reverse
is also true:

1
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Theorem 1.4. Take an ϵ-balanced (n, k, d) code with generator matrix G. The rows of the generator
matrix are the support of an ϵ-biased distribution D on Fk

2.

Proof. Since we defined the support of our ϵ-biased distribution D to be the rows of G, we know
that for any set S ∈ [k] such that S ̸= ∅, if we define the vector v ∈ Fk

2 such that vj = 1 ⇐⇒ j ∈ S,
we have:

Pr
x∼D

[χS (x) = 1] =
1

|supp(D)|
∑

x∈supp(D)

1{χS (x) = 1} =
weight(Gv)

|supp(D)|
∈
[(

1

2
− ϵ

)
,

(
1

2
+ ϵ

)]
,

since the weight of any code word in an ϵ-balanced code is in the range [(12 − ϵ) · n, (12 + ϵ) · n].

2 Derandomization

A very central question in complexity theory is the overhead of derandomization— i.e. what
is the trade-off between time and space v.s. randomness? There are two main approaches we
use to try and answer these questions. The first is making reasonable assumptions about circuit
lower bounds and using them to design algorithms, and in particular, to give deterministic analogs
of randomized algorithms. The second, which is more interesting to the author, is constructing
PRGs for interesting classes of boolean functions (such as threshold functions, small-depth circuits,
formulas, and polynomials).

2.1 Hardness v.s. Randomness

A very important question in derandomization is BPP
?
= P — i.e. can we derandomize all

randomized polynomial time algorithms in polynomial time? To make progress in answering this
question, we define some concepts:

Definition 2.1 (correlation). Take two functions f, g : {0, 1}n → {0, 1}. Then the correlation
between f and g is defined as:

corr(f, g) = E
x∼Un

[
(−1)f(x)+g(x)

]
,

or equivalently,

corr(f, g) = Pr
x∼Un

[f(x) = g(x)]− Pr
x∼Un

[f(x) ̸= g(x)].

Definition 2.2 (hardness against a function class). A function g : {0, 1}n → {0, 1} is average case
ϵ-hard against a function class F if for all f ∈ F we have:

|corr(f, g)| ≤ ϵ

or equivalently,

Pr
x∼Un

[g(x) = f(x)] ≤ 1

2
+ ϵ.
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Definition 2.3 (hardness against circuits). A function g : {0, 1}n → {0, 1} is average case (S, ϵ)-
hard against circuits if for all circuits C of size at most S:

corr(g, C) ≤ ϵ

or equivalently,

Pr
x∼Un

[g(x) = C(x)] ≤ 1

2
+ ϵ.

Definition 2.4 (pseudorandomness against circuits). A distribution D on {0, 1}n is (S, ϵ)-pseudorandom
against circuits if for all circuits C of size at most S:∣∣∣∣ Pr

x∼Un

[C(x) = 1]− Pr
x∼D

[C(x) = 1]

∣∣∣∣ ≤ ϵ.

In the next lecture, we will see how we can connect these concepts and eventually show why there
is great evidence that in fact BPP = P.
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