CS 6815 Pseudorandomness and Combinatorial Constructions Fall 2019

Lecture 9: September 26
Lecturer: Eshan Chattopadhyay Scribe: Yanyi Liu

9.1 Introduction

In this lecture, we talked about zig-zag product of graphs, and introduced how to make use of products we
covered so far to construct mildly and strongly explicit expanders. Zig-zag product could also be used in the
proof for PCP theorem.

9.2 Zig-zag Product

Definition 9.1 Let G be a (N1, Dy)-graph, i.e., a Di-regular graph with N1 nodes, and H be a (D1, D3)-
graph. The zig-zag product of G and H is a (N1 x D1, D3)-regular graph, which is denoted by G @ H. Let
(v,i) where v € V(G),i € [D1] denote a node in G@) H, and the (a,b)-th neighbor of (v,i) in G@ H where
a,b € [Da] denote the (aDy + b)-th neighbor of (v,i) in G@H. For each node (v,i) € G@ H, it has D3
neighbors, and the (a,b)-th neighbor is (u,j) computed as follow:

e Let i/ be the a-th neighbor of node i in H.
o Let u be the i'-th neighbor of v in G. Thus, (v,u) is the i'-th edge leaving v.

e For u, v is also a neighbor of u. Suppose v is the j'-th neighbor of u.

e Let j be the b-th neighbor of j' in H.

Informally, zig-zag product decreases the degree without hurting expansion too much. In particular, we
choose D? < D;. We can consider G as the “large graph” and H as the “small graph”. The intuition
behind this construction is that we want that a random step on G @ H corresponds to a step on G, but
using a random step on H to choose which neighbor to go. For each v € V(G), we replace it by a cloud
of Dy nodes, with ith node corresponding to the ith edge that is incident on v. Consider a random step
on G@ H, starting from (v,7). It will first jump into a random node in this cloud, i.e., (v,i’), since a is
randomly chosen. After i’ is determined, we will jump to a deterministic node (u, j') in the cloud of u. Then
we will pick up b randomly, which pushes us to a random node (u, j) in that cloud.

An example of zig-zag product is shown in Fig [9.1] The figure was borrowed from lecture note of last
semester.

Lemma 9.2 If H is a complete graph, G@H =G ® H.
Theorem 9.3 G @ H is a D3-regular graph on N1 Dy nodes where \(G@ H) < M\(G) + \(H).

This theorem was proved in the paper by Reimgold, Vadhan, and Wigderson, in which they presented the
zig-zag product. We will prove a slightly simpler version in this lecture, and a further simpler proof can be
found in the textbook.
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Figure 9.1: An example of zig-zag product.

Lemma 9.4 G @ H is a D3-regular graph on N1D; nodes where N(G@ H) < X\(G) + 2\(H).
The proof for this lemma is in the textbook, in which the authors use the Matrix-Decomposition approach.
Lemma 9.5 G @ H is a D3-regular graph on N1D; nodes where N(G@ H) < MG) + M(H) + \(H)?.

Proof: We use Vector-Decomposition to prove this lemma. Let
A =1In, ® Ay

be a matrix in RMP1xXNiDi with its diagonal containing several blocks of Ap, corresponding to vertex
replacement. Let P € RM1P1xNiD1 he 5 permutation matrix s.t.

Ploiy,ug) = 1

iff e = (u,v) € E(G) where e is the i-th edge incident on v and e is also the j-th edge incident on u. Other
entries in P wil be 0.

Claim 9.6 AG@H = ZI;PZ;, where AG@H is the random walk matriz for G(@) H.

To prove the above lemma, we should bound the following spectral norm:

ma el Ay PApz|. (9.1)
zeRM1 D1 ||z||,=1,z 11N, D,
We then use Vector-Decomposition to rewrite
— O (| Il 1L 1y 1
T = (T1,29,...,0N,) = (T], 29, .., TN, ) + (27,23, ..., N, ) = 2l + 2t

where x! | 1p,,z} L1p, for all i € [N;]. Each acy,xf is the vector decomposition restricted on i-th cloud.

We make the following two useful observations: 1) Z;x” = zll since for each 4, AHaﬂi| = x!; 2) HZ;xJ_H <
2

AH) ”(EJ‘HQ since it holds for each i. After substituting z = z!l + 21 into equation the remaining thing
is to show that:

((:c“?@)TPZEx“ +2(zlAp) " PAat + (leETPZ;xL( < MG) + MH) + \(H)*.

We will deal with each of three terms separately and by triangle inequality, we will get our result.
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1L |(all A)T PAal| < A(G).
We define y € RM s.t. y; = \/Dilasy)l. If we collapse z!l by shrinking each cloud, and normalizing the
result, we will get y. We have
\(z“Z;)TPExM = |1:“TP93”| (by observation 1)
= |y" Agy| (by cancel out 2 \/D; factors)
< A(G) (by expansion of G)

2. |2(a Ag)T PAgat| < A(H).
|2(x||XI;)TPAA;zJ‘| = |2(z“)TPAAI;xJ‘| (by observation 1)
<2 H(x”)TPH2 HExL’L (by Cauchy-Schwartz)
<2 Hx” H2 AH) HxLHQ (by permuting in the same cloud, and observation 2)

yll=! s + 11

< 2\(H
< 2\( S

< A(H).

(by AM-GM ineq)

3. (et Ap)TPAgzt| < A(H)2.
(@t AT PAgat| < HZ;:&H 1P|, HL}#H (by Cauchy-Schwartz)
2 2

< \(H)? Hlez (since || P]|, is at most 1, and observation 2)

< MNH)?.
|
9.3 Constructing Explicit Expanders
9.3.1 Mildly Explicit
Let G; = H be a (D*, D, 1/4) expander constructed by brute-force. Let G;11 = G @ G;.
Claim 9.7 G,, is a (D*",D? 1/2) expander.
Proof: By induction. G2 : (D*", D*,1/4).G, : (D*, D,1/4),G% @ G, : (D't D2 1/2). |

9.3.2 Strongly Explicit

Let G; = H be a (D*, D,1/4) expander constructed by brute-force. Let G;11 = (G; ® G;)? @ G;.
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