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Lecturer: Eshan Chattopadhyay Scribe: Yanyi Liu

9.1 Introduction

In this lecture, we talked about zig-zag product of graphs, and introduced how to make use of products we
covered so far to construct mildly and strongly explicit expanders. Zig-zag product could also be used in the
proof for PCP theorem.

9.2 Zig-zag Product

Definition 9.1 Let G be a (N1, D1)-graph, i.e., a D1-regular graph with N1 nodes, and H be a (D1, D2)-
graph. The zig-zag product of G and H is a (N1 ×D1, D

2
2)-regular graph, which is denoted by G z H. Let

(v, i) where v ∈ V (G), i ∈ [D1] denote a node in G z H, and the (a, b)-th neighbor of (v, i) in G z H where
a, b ∈ [D2] denote the (aD2 + b)-th neighbor of (v, i) in G z H. For each node (v, i) ∈ G z H, it has D2

2

neighbors, and the (a, b)-th neighbor is (u, j) computed as follow:

• Let i′ be the a-th neighbor of node i in H.

• Let u be the i′-th neighbor of v in G. Thus, (v, u) is the i′-th edge leaving v.

• For u, v is also a neighbor of u. Suppose v is the j′-th neighbor of u.

• Let j be the b-th neighbor of j′ in H.

Informally, zig-zag product decreases the degree without hurting expansion too much. In particular, we
choose D2

2 � D1. We can consider G as the “large graph” and H as the “small graph”. The intuition
behind this construction is that we want that a random step on G z H corresponds to a step on G, but
using a random step on H to choose which neighbor to go. For each v ∈ V (G), we replace it by a cloud
of D1 nodes, with ith node corresponding to the ith edge that is incident on v. Consider a random step
on G z H, starting from (v, i). It will first jump into a random node in this cloud, i.e., (v, i′), since a is
randomly chosen. After i′ is determined, we will jump to a deterministic node (u, j′) in the cloud of u. Then
we will pick up b randomly, which pushes us to a random node (u, j) in that cloud.

An example of zig-zag product is shown in Fig 9.1. The figure was borrowed from lecture note of last
semester.

Lemma 9.2 If H is a complete graph, G z H = G⊗H.

Theorem 9.3 G z H is a D2
2-regular graph on N1D1 nodes where λ(G z H) ≤ λ(G) + λ(H).

This theorem was proved in the paper by Reimgold, Vadhan, and Wigderson, in which they presented the
zig-zag product. We will prove a slightly simpler version in this lecture, and a further simpler proof can be
found in the textbook.

9-1



9-2 Lecture 9: September 26

Figure 9.1: An example of zig-zag product.

Lemma 9.4 G z H is a D2
2-regular graph on N1D1 nodes where λ(G z H) ≤ λ(G) + 2λ(H).

The proof for this lemma is in the textbook, in which the authors use the Matrix-Decomposition approach.

Lemma 9.5 G z H is a D2
2-regular graph on N1D1 nodes where λ(G z H) ≤ λ(G) + λ(H) + λ(H)2.

Proof: We use Vector-Decomposition to prove this lemma. Let

ÃH = IN1 ⊗AH

be a matrix in RN1D1×N1D1 with its diagonal containing several blocks of AH , corresponding to vertex
replacement. Let P ∈ RN1D1×N1D1 be a permutation matrix s.t.

P(v,i),(u,j) = 1,

iff e = (u, v) ∈ E(G) where e is the i-th edge incident on v and e is also the j-th edge incident on u. Other
entries in P wil be 0.

Claim 9.6 AG z H = ÃHPÃH , where AG z H is the random walk matrix for G z H.

To prove the above lemma, we should bound the following spectral norm:

max
x∈RN1D1 ,‖x‖2=1,x⊥1N1D1

∣∣∣xT ÃHPÃHx
∣∣∣. (9.1)

We then use Vector-Decomposition to rewrite

x = (x1, x2, . . . , xN1) = (x
‖
1, x
‖
2, . . . , x

‖
N1

) + (x⊥1 , x
⊥
2 , . . . , x

⊥
N1

) = x‖ + x⊥,

where x
‖
i ‖ 1D1

, x⊥i ⊥1D1
for all i ∈ [N1]. Each x

‖
i , x
⊥
i is the vector decomposition restricted on i-th cloud.

We make the following two useful observations: 1) ÃHx
‖ = x‖ since for each i, AHx

‖
i = x

‖
i ; 2)

∥∥∥ÃHx⊥
∥∥∥
2
≤

λ(H)
∥∥x⊥∥∥

2
since it holds for each i. After substituting x = x‖ + x⊥ into equation 9.1, the remaining thing

is to show that:∣∣∣(x‖ÃH)TPÃHx
‖ + 2(x‖ÃH)TPÃHx

⊥ + (x⊥ÃH)TPÃHx
⊥
∣∣∣ ≤ λ(G) + λ(H) + λ(H)2.

We will deal with each of three terms separately and by triangle inequality, we will get our result.
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1. |(x‖ÃH)TPÃHx
‖| ≤ λ(G).

We define y ∈ RN1 s.t. yi =
√
D1x

‖
i,1. If we collapse x‖ by shrinking each cloud, and normalizing the

result, we will get y. We have

|(x‖ÃH)TPÃHx
‖| = |x‖

T
Px‖| (by observation 1)

= |yTAGy| (by cancel out 2
√
D1 factors)

≤ λ(G) (by expansion of G)

2. |2(x‖ÃH)TPÃHx
⊥| ≤ λ(H).

|2(x‖ÃH)TPÃHx
⊥| = |2(x‖)TPÃHx

⊥| (by observation 1)

≤ 2
∥∥∥(x‖)TP

∥∥∥
2

∥∥∥ÃHx
⊥
∥∥∥
2

(by Cauchy-Schwartz)

≤ 2
∥∥∥x‖∥∥∥

2
λ(H)

∥∥x⊥∥∥
2

(by permuting in the same cloud, and observation 2)

≤ 2λ(H)

∥∥x‖∥∥2
2

+
∥∥x⊥∥∥2

2

2
(by AM-GM ineq)

≤ λ(H).

3. |(x⊥ÃH)TPÃHx
⊥| ≤ λ(H)2.

|(x⊥ÃH)TPÃHx
⊥| ≤

∥∥∥ÃHx
⊥
∥∥∥
2
‖P‖2

∥∥∥ÃHx
⊥
∥∥∥
2

(by Cauchy-Schwartz)

≤ λ(H)2
∥∥x⊥∥∥2

2
(since ‖P‖2 is at most 1, and observation 2)

≤ λ(H)2.

9.3 Constructing Explicit Expanders

9.3.1 Mildly Explicit

Let G1 = H be a (D4, D, 1/4) expander constructed by brute-force. Let Gi+1 = G2
i z G1.

Claim 9.7 Gn is a (D4n, D2, 1/2) expander.

Proof: By induction. G2
n : (D4n, D4, 1/4).G1 : (D4, D, 1/4), G2

n z G1 : (D4(n+1), D2, 1/2).

9.3.2 Strongly Explicit

Let G1 = H be a (D4, D, 1/4) expander constructed by brute-force. Let Gi+1 = (Gi ⊗Gi)
2 z G1.
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