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1.1 Introduction

Suppose G = (V,E) is a D-regular graph with γ = 1−λ spectral expansion, where |V | = N . Then a random
walk P of length t is chosen as follows:

• randomly pick the first vertex v1;

• randomly pick a neighbor of last picked vertex for t− 1 steps

• generate a random walk P : l1 → l2 → ...→ lt

Theorem 1.1 (Hitting Property of Expander Walks) For any set B ⊂ V ,

Pr[Random walk P stays in B] ≤ (µB + (1− µB)λ)t

where µB = |B|
N is the density of set B.

1.2 Notation and Preliminary

Throughout this lecture we are going to use following notation:

• 1 denotes the vector of all 1’s: 1 = (1, ..., 1).

• J ∈ RN×N denotes the matrix with all entries equal to 1/N .

• lB denotes the indicator vector of set B : j ∈ B ⇐⇒ (lB)j = 1.

• u ∈ RN = 1
N 1 = ( 1

N , ...,
1
N ).

• < x, y > denotes the inner product of x and y.

• A is the normalized adjacency matrix of G.

1.2.1 Spectral Norm of Matrices

Definition 1.2 Let x ∈ Rn, the p-norm of x is defined as

‖x‖p = (

n∑
i=1

|xi|p)1/p, p ≥ 1
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Definition 1.3 Let M ∈ Rn×n, the 2-norm of M is defined as:

‖M‖2 = max
x∈Rn

‖Mx‖2
‖x‖2

= max
x∈Rn,‖x‖2=1

‖Mx‖2

Property 1.4 2-norm of matrices satisfies the following properties:

1. If M is a symmetric matrix, then ‖M‖2 = |λ1| where λ1 is the largest eigenvalue of M .

2. ‖M1 +M2‖2 ≤ ‖M1‖2 + ‖M2‖2.

3. ‖M1M2‖2 ≤ ‖M1‖2‖M2‖2.

1.2.2 Vector and matrix decomposition

Lemma 1.5 (Vector decomposition) ∀x ∈ Rn, x = x‖ + x⊥, where x‖ =< x,1 > ·1, x⊥ = x− x‖

Lemma 1.6 (Matrix decomposition) A = γJ + λE, then ‖E‖2 ≤ 1

Proof: Define E = A−γJ
λ . Let x ∈ Rn, ‖x‖2 = 1.x = x‖ + x⊥. Then Ax‖ = x‖, Jx‖ = x‖, Jx⊥ = 0. Hence

λEx = (A− γJ)(x‖ + x⊥) = (1− γ)x‖ +Ax⊥

⇒Ex = x‖ +
1

λ
Ax⊥

⇒‖Ex‖22 ≤ ‖x‖22 +
1

λ2
‖Ax⊥‖22 ≤ ‖x‖‖22 + λ2‖x⊥‖22

≤‖x‖‖22 + ‖x⊥‖22 = ‖x‖22 = 1

Thus ‖E‖2 ≤ 1.

1.3 Proof of Theorem 1.1

Proof:[Theorem 1.1]

Claim 1.7
Pr[Random walk P stays in B] = ‖uTDB(DT

BADB)t−1‖1

Proof of:[Claim1.7] The equality follows by induction on t. �

According to Claim 1.7, we have:

Pr[Random walk P stays in B] = ‖uTDB(DBADB)t−1‖1
≤
√
|B|‖uTDB(DBADB)t−1‖2

≤
√
|B|‖uTDB‖2‖DBADB‖t−12

≤
√
|B| · 1

N
· ‖lB‖2‖DBADB‖t−12

=µB‖DBADB‖t−12

Notice that ‖DBADB‖t−12 can be written as ‖DBADB‖2 = γ‖DBJDB‖2 + λ‖DBEDB‖2
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Claim 1.8 ‖DBEDB‖2 ≤ 1

Proof of:[Claim1.8] ‖DBEDB‖2 ≤ ‖DB‖22‖E‖2 ≤ 1. �

Claim 1.9 ‖DBJDB‖2 ≤ µB

Proof of:[Claim1.9] Let x ∈ RN , ‖x‖2 = 1, let xB = DBx. Then

JxB =
1

N

∑
i∈B

xi · 1,

DBJxB =
1

N

∑
i∈B

xilB ,

‖DBJDB‖2 ≤
1

N

∣∣∣∑xi

∣∣∣√B
≤ 1

N
(
∑

x2i )
√
B
√
B ≤ |B|

N
= µB �

Hence ‖DBADB‖2 = γ‖DBJDB‖2 + λ‖DBEDB‖2 ≤ (1− λ)µB + λ = µB + (1− µB)λ.

Thus, we have

Pr[Random walk P stays in B] = ‖uTDB(DT
BADB)t−1‖1 ≤ (µB + (1− µB)λ)t.
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