Lecture 1: September 17

1.1 Introduction

Suppose $G=(V, E)$ is a D-regular graph with $\gamma=1-\lambda$ spectral expansion, where $|V|=N$. Then a random walk P of length t is chosen as follows:

- randomly pick the first vertex v_{1};
- randomly pick a neighbor of last picked vertex for $t-1$ steps
- generate a random walk $P: l_{1} \rightarrow l_{2} \rightarrow \ldots \rightarrow l_{t}$

Theorem 1.1 (Hitting Property of Expander Walks) For any set $B \subset V$,

$$
\operatorname{Pr}[\text { Random walk } P \text { stays in } B] \leq\left(\mu_{B}+\left(1-\mu_{B}\right) \lambda\right)^{t}
$$

where $\mu_{B}=\frac{|B|}{N}$ is the density of set B.

1.2 Notation and Preliminary

Throughout this lecture we are going to use following notation:

- $\mathbf{1}$ denotes the vector of all 1 's: $\mathbf{1}=(1, \ldots, 1)$.
- $J \in \mathbb{R}^{N \times N}$ denotes the matrix with all entries equal to $1 / N$.
- \mathbf{l}_{B} denotes the indicator vector of set $B: j \in B \Longleftrightarrow\left(\mathbf{l}_{B}\right)_{j}=1$.
- $\mathbf{u} \in \mathbb{R}^{N}=\frac{1}{N} \mathbf{1}=\left(\frac{1}{N}, \ldots, \frac{1}{N}\right)$.
- $\langle x, y\rangle$ denotes the inner product of x and y.
- A is the normalized adjacency matrix of G.

1.2.1 Spectral Norm of Matrices

Definition 1.2 Let $x \in \mathbb{R}^{n}$, the p-norm of x is defined as

$$
\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}, p \geq 1
$$

Definition 1.3 Let $M \in \mathbb{R}^{n \times n}$, the 2-norm of M is defined as:

$$
\|M\|_{2}=\max _{x \in \mathbb{R}^{n}} \frac{\|M x\|_{2}}{\|x\|_{2}}=\max _{x \in \mathbb{R}^{n},\|x\|_{2}=1}\|M x\|_{2}
$$

Property 1.42 -norm of matrices satisfies the following properties:

1. If M is a symmetric matrix, then $\|M\|_{2}=\left|\lambda_{1}\right|$ where λ_{1} is the largest eigenvalue of M.
2. $\left\|M_{1}+M_{2}\right\|_{2} \leq\left\|M_{1}\right\|_{2}+\left\|M_{2}\right\|_{2}$.
3. $\left\|M_{1} M_{2}\right\|_{2} \leq\left\|M_{1}\right\|_{2}\left\|M_{2}\right\|_{2}$.

1.2.2 Vector and matrix decomposition

Lemma 1.5 (Vector decomposition) $\forall x \in \mathbb{R}^{n}, x=x^{\|}+x^{\perp}$, where $x^{\|}=<x, \mathbf{1}>\cdot \mathbf{1}, x^{\perp}=x-x^{\|}$
Lemma 1.6 (Matrix decomposition) $A=\gamma J+\lambda E$, then $\|E\|_{2} \leq 1$
Proof: Define $E=\frac{A-\gamma J}{\lambda}$. Let $x \in \mathbb{R}^{n},\|x\|_{2}=1 . x=x^{\|}+x^{\perp}$. Then $A x^{\|}=x^{\|}, J x^{\|}=x^{\|}, J x^{\perp}=0$. Hence

$$
\begin{aligned}
& \lambda E x=(A-\gamma J)\left(x^{\|}+x^{\perp}\right)=(1-\gamma) x^{\|}+A x^{\perp} \\
\Rightarrow & E x=x^{\|}+\frac{1}{\lambda} A x^{\perp} \\
\Rightarrow & \|E x\|_{2}^{2} \leq\|x\|_{2}^{2}+\frac{1}{\lambda^{2}}\left\|A x^{\perp}\right\|_{2}^{2} \leq\left\|x^{\|}\right\|_{2}^{2}+\lambda^{2}\left\|x^{\perp}\right\|_{2}^{2} \\
\leq & \left\|x^{\|}\right\|_{2}^{2}+\left\|x^{\perp}\right\|_{2}^{2}=\|x\|_{2}^{2}=1
\end{aligned}
$$

Thus $\|E\|_{2} \leq 1$.

1.3 Proof of Theorem 1.1

Proof:[Theorem 1.1

Claim 1.7

$$
\operatorname{Pr}[\text { Random walk } P \text { stays in } B]=\left\|\mathbf{u}^{T} D_{B}\left(D_{B}^{T} A D_{B}\right)^{t-1}\right\|_{1}
$$

Proof of:[Claim1.7] The equality follows by induction on t.
According to Claim 1.7, we have:

$$
\begin{aligned}
& \operatorname{Pr}[\operatorname{Random} \text { walk } P \text { stays in } B]=\left\|\mathbf{u}^{T} D_{B}\left(D_{B} A D_{B}\right)^{t-1}\right\|_{1} \\
\leq & \sqrt{|B|}\left\|\mathbf{u}^{T} D_{B}\left(D_{B} A D_{B}\right)^{t-1}\right\|_{2} \\
\leq & \sqrt{|B|}\left\|\mathbf{u}^{T} D_{B}\right\|_{2}\left\|D_{B} A D_{B}\right\|_{2}^{t-1} \\
\leq & \sqrt{|B|} \cdot \frac{1}{N} \cdot\left\|\mathbf{l}_{B}\right\|_{2}\left\|D_{B} A D_{B}\right\|_{2}^{t-1} \\
= & \mu_{B}\left\|D_{B} A D_{B}\right\|_{2}^{t-1}
\end{aligned}
$$

Notice that $\left\|D_{B} A D_{B}\right\|_{2}^{t-1}$ can be written as $\left\|D_{B} A D_{B}\right\|_{2}=\gamma\left\|D_{B} J D_{B}\right\|_{2}+\lambda\left\|D_{B} E D_{B}\right\|_{2}$

Claim 1.8 $\left\|D_{B} E D_{B}\right\|_{2} \leq 1$

Proof of:[Claim $1.8\left\|D_{B} E D_{B}\right\|_{2} \leq\left\|D_{B}\right\|_{2}^{2}\|E\|_{2} \leq 1$.

Claim $1.9\left\|D_{B} J D_{B}\right\|_{2} \leq \mu_{B}$

Proof of:[Claim 1.9 Let $x \in \mathbb{R}^{N},\|x\|_{2}=1$, let $x_{B}=D_{B} x$. Then

$$
\begin{aligned}
& J x_{B}=\frac{1}{N} \sum_{i \in B} x_{i} \cdot \mathbf{1} \\
& \\
& D_{B} J x_{B}=\frac{1}{N} \sum_{i \in B} x_{i} \mathbf{l}_{B} \\
& \\
& \left\|D_{B} J D_{B}\right\|_{2} \leq \frac{1}{N}\left|\sum x_{i}\right| \sqrt{B} \\
& \leq \\
& \frac{1}{N}\left(\sum x_{i}^{2}\right) \sqrt{B} \sqrt{B} \leq \frac{|B|}{N}=\mu_{B}
\end{aligned}
$$

Hence $\left\|D_{B} A D_{B}\right\|_{2}=\gamma\left\|D_{B} J D_{B}\right\|_{2}+\lambda\left\|D_{B} E D_{B}\right\|_{2} \leq(1-\lambda) \mu_{B}+\lambda=\mu_{B}+\left(1-\mu_{B}\right) \lambda$.
Thus, we have

$$
\operatorname{Pr}[\operatorname{Random} \text { walk } P \text { stays in } B]=\left\|\mathbf{u}^{T} D_{B}\left(D_{B}^{T} A D_{B}\right)^{t-1}\right\|_{1} \leq\left(\mu_{B}+\left(1-\mu_{B}\right) \lambda\right)^{t}
$$

