Lecture 5: September 12

5.1 Expander Mixing Lemma

Lemma 5.1 Let $G=(N, \gamma)$ be a spectral expander. $\forall S, T \subseteq[N]$, we have two equivalent equations

$$
\begin{aligned}
\left|E(S, T)-\frac{D|S||T|}{N}\right| & \leq \lambda \sqrt{|S||T|\left(1-\frac{|S|}{N}\right)\left(1-\frac{|T|}{N}\right)} \\
\left|\frac{E(S, T)}{N D}-\alpha \beta\right| & \leq \lambda \sqrt{\alpha \beta(1-\alpha)(1-\beta)}
\end{aligned}
$$

with $\frac{|S|}{N}=\alpha, \frac{|T|}{N}=\beta$. Note that the last two terms under the square root may be omitted for sufficiently small α, β (or equivalently, for sufficiently large $\frac{|S|}{N}, \frac{|T|}{N}$).
Proof: Recall that $E(S, T)$ counts each edge between S and T twice, $\overrightarrow{1}=(1, \ldots, 1) \in \mathbb{R}^{n}$, $\overrightarrow{\mathbb{1}}_{S}(i)=$ the indicator vector for $S \in \mathbb{R}^{n}, A$ the normalized adjacency matrix of G.
We see that $\overrightarrow{\mathbb{1}}_{S}^{\top} A \overrightarrow{\mathbb{1}}_{T}=\frac{E(S, T)}{D}=\sum A_{i j} \overrightarrow{\mathbb{1}}_{S}(i) \overrightarrow{\mathbb{1}}_{T}(j)$ (we can switch i and j since A is symmetric).
Using vector decomposition, we get that $\overrightarrow{\mathbb{1}}_{S}=|S| \overrightarrow{1}+\overrightarrow{\mathbb{1}}_{S}^{\perp}=\sum_{i=1}^{n} \mu_{i} \vec{v}_{i}, \overrightarrow{\mathbb{1}}_{T}=|T| \overrightarrow{1}+\overrightarrow{\mathbb{1}} \stackrel{\perp}{T}=\sum_{i=1}^{n} \rho_{i} \vec{v}_{i}$, and ultimately that $\overrightarrow{\mathbb{1}}_{S} A \overrightarrow{\mathbb{1}}_{T}=(|S| \overrightarrow{1}+\overrightarrow{\mathbb{1}} \stackrel{\perp}{S})^{\top} A\left(|T| \overrightarrow{1}+\overrightarrow{\mathbb{1}}_{T}^{\perp}\right)$.
Note that $\sum \mu_{i}{ }^{2}=|S|, \sum \rho_{i}{ }^{2}=|T|, \vec{v}_{i}=\frac{1}{\sqrt{n}} \overrightarrow{1}, \mu_{1}=<\overrightarrow{\mathbb{1}}_{S}, \vec{v}_{1}>=\frac{|S|}{\sqrt{N}}, \rho_{1}=<\overrightarrow{\mathbb{1}}_{S}, \vec{v}_{1}>=\frac{|T|}{\sqrt{N}}$. Putting all this together we see that

$$
\begin{aligned}
\overrightarrow{\mathbb{1}}_{S}^{\top} A \overrightarrow{\mathbb{1}}_{T} & =\left(\sum \mu_{i} \vec{v}_{i}\right)^{\top} A\left(\sum \rho_{i} \vec{v}_{i}\right) \\
& =\left(\sum \mu_{i} \vec{v}_{i}\right)^{\top}\left(\sum \rho_{i} \lambda_{i} \vec{v}_{i}\right)\left(\vec{v}_{i} \text { are eigenvectors }\right) \\
& =\sum_{i=1}^{n} \mu_{i} \lambda_{i} \rho_{i}\left(\vec{v}_{i}\right. \text { are orthonormal) }
\end{aligned}
$$

This means that $\left|\frac{E(S, T)}{D}-\mu_{1} e_{1}\right| \leq\left|\sum_{i=2}^{n} \mu_{i} \lambda_{i} \rho_{i}\right| \leq \lambda\left|\sum \mu_{i} \rho_{i}\right|$, where $\mu_{1} e_{1}=\frac{|S||T|}{N}, \lambda=\max \left\{\left|\lambda_{2}\right|,\left|\lambda_{n}\right|\right\}$. We invoke the Cauchy-Schwartz inequality to bound the previous by

$$
\begin{aligned}
\lambda\left(\sum_{i=2}^{n} \mu_{i}^{2}\right)^{\frac{1}{2}}\left(\sum_{i=2}^{n} \rho_{i}^{2}\right)^{\frac{1}{2}} & \leq \lambda\left(|S|-\frac{|S|^{2}}{N}\right)^{\frac{1}{2}}\left(|T|-\frac{|T|^{2}}{N}\right)^{\frac{1}{2}} \\
& =\lambda(|S||T|(1-\alpha)(1-\beta))^{\frac{1}{2}}
\end{aligned}
$$

5.2 Spectral Expansion Implies Vertex Expansion

Proof: Let G be a (N, γ) spectral expander. $\forall \epsilon>0, G$ is an $(\epsilon N, A)$ vertex expander, where $A=\frac{1}{(1-\epsilon) \lambda^{2}+\epsilon}$, $\lambda=1-\gamma$. Fix $\epsilon>0, S \subseteq[N],|S|=\epsilon N, T=[N] \backslash N(S)$. Suppose $N(S)<A|S|=A \epsilon N$; we observe
that $\beta=\frac{|T|}{N} \geq 1-A \epsilon . E(S, T)=0, \quad$ so $\alpha \beta \leq \lambda \sqrt{\alpha \beta(1-\alpha)(1-\beta)}$ by the Expander Mixing Lemma. $\alpha \beta \leq \lambda^{2}(1-\alpha)(1-\beta) ; \beta \leq \frac{\lambda^{2}(1-\alpha)}{\alpha+\lambda^{2}(1-\alpha)}$. Invoking the earlier bound on beta yields $A \epsilon \geq \frac{\alpha}{\alpha+\lambda^{2}(1-\alpha)}$, but epsilon is equal to alpha by definition, so $A \geq \frac{1}{\epsilon+\lambda^{2}(1-\alpha)}$.

