Lecture 3: September 05

Lecturer: Eshan Chattopadhyay

Scribe: Yue Guo

3.1 *k*-Wise Independence

Definition 3.1 (k-wise independence) X_1, \ldots, X_n is k-wise independent if $\forall T \subseteq [n], |T| = k, \{X_j\}_{j \in T}$ are independent random variables.

Lemma 3.2 Let $\{X_1, \ldots, X_n\}$ be k-wise independent random variables in the range [0,1]. Assume k is even. Let $X = \sum_{i=1}^n X_i$, $\mu = \mathbb{E}[X]$. Then $\forall t > 0$, $\Pr[|X - \mu| > t] \le (O(\frac{\sqrt{2ne}}{t}))^k$.

Proof:

With Markov inequility, we have $\Pr[(X-\mu)^k > t^k] \leq \frac{\mathbb{E}[(X-\mu)^k]}{t^k}$. Moreover, $\mathbb{E}[(X-\mu)^k] = \mathbb{E}[(\sum_{i=1}^n (X_i-\mu_i))^k]$ where $\mu_i = \mathbb{E}[X_i]$, as X_i 's are k-wise independent. Let $Y_i = X_i - \mu_i$. We have $\mathbb{E}[Y_i] = 0$. Then the expectation can be written as $\mathbb{E}[(Y_1 + Y_2 + \ldots + Y_n)^k]$. Expand it, we have

$$\mathbb{E}[(X-\mu)^k] = \sum_{j_1,\dots,j_k \in [n]} \mathbb{E}\left[\prod_{i=1}^k Y_{j_i}\right]$$

where there might be duplicated j_i . If we assume that X_i is binary (or chosen within [0, 1]), each item in the above sum is less than or equal to 1.

Now we show that some of the items $\mathbb{E}\left[\prod_{i=1}^{k} Y_{j_i}\right]$ are zero. Combine all of the duplicated j_i 's together and rewrite the expectation as $\mathbb{E}\left[Y_{j_1}^{k_1}\cdot\ldots\cdot Y_{j_l}^{k_l}\right]$ where each j_i are distinct and the sum of k_1,\ldots,k_l is k. Now we show that if l > k/2,

$$\mathbb{E}\left[Y_{j_1}^{k_1}\cdot\ldots\cdot Y_{j_l}^{k_l}\right] = \mathbb{E}[Y_{j_1}^{k_1}]\cdot\mathbb{E}[Y_{j_2}^{k_2}]\cdot\ldots\cdot\mathbb{E}[Y_{j_l}^{k_l}] \qquad (Y_i\text{'s are }k\text{-wise independent})$$

if $l > k/2$, $= 0$ $(\exists i \in [l] \text{ s.t. } k_i = 1 \text{ and } \mathbb{E}[Y_i] = 0 \ \forall i \in [n])$ (3.1)

Thus we need only consider the items with $l \leq k/2$. The number of items with $l \leq k/2$ is upper bounded by $\binom{n}{\frac{k}{2}} \cdot k^{\frac{k}{2}}$, which can be considered as the number of choices, choosing n/2 different j_i 's from [n], and then choosing k_i to be either 0 or $2, \ldots, k$ for all $i \in \{1, \ldots, \frac{k}{2}\}$. As each item is less than or equal to 1, we have

$$\mathbb{E}[(X-\mu)^{k}] \le \binom{n}{\frac{k}{2}} \cdot k^{\frac{k}{2}} \cdot 1 \le \left(\frac{2ne}{k}\right)^{\frac{k}{2}} \cdot k^{\frac{k}{2}} = (2ne)^{\frac{k}{2}} = \sqrt{2ne}^{k}$$

Lemma 3.3 (Construction of k-wise independent random variables) For any prime p and k > 0, there is a construction of k-wise independent random variables X_1, \ldots, X_p using $k \lceil \log p \rceil$ bits of randomness.

Proof: Fix a finite field \mathbb{F}_p where p is a prime. Sample a uniform vector $\overrightarrow{\alpha} = \{\alpha_0, \alpha_1, \ldots, \alpha_{k-1}\} \in \mathbb{F}_p^k$. Let $h_{\overrightarrow{\alpha}}(y) := \sum_{i=0}^{k-1} \alpha_i \cdot y^i$. We can construct a set of p random variables $\{X_i = h_{\overrightarrow{\alpha}}(i)\}_{i=0}^{p-1}$.

First we observe that X_i for all $i \in \{0, ..., p-1\}$ is uniform over \mathbb{F}_p . Now we prove that the random variables $\{X_i\}$ are k-wise independent. In other words, we need to prove the following claim:

Claim 3.4 For any $T \subseteq \{0, ..., p-1\}, |T| = k$, denote $T = \{i_0, ..., i_{k-1}\}$, for any $\overrightarrow{\beta} = (\beta_0, ..., \beta_{k-1})$, $\Pr[X_{i_j} = \beta_j \ \forall j \in \{0, ..., k-1\}] = \frac{1}{p^k}$

Proof: We can write the event in the following way,

$$\Pr[X_{i_j} = \beta_j \; \forall j \in \{0, \dots, k-1\}] = \Pr\left[\begin{pmatrix} 1 & i_0 & i_0^2 & \dots & i_0^{k-1} \\ 1 & i_1 & i_1^2 & \dots & i_1^{k-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & i_{k-1} & i_{k-1}^2 & \dots & i_{k-1}^{k-1} \end{pmatrix} \overrightarrow{\alpha} = \overrightarrow{\beta}\right]$$

The matrix (denoted with M) in the equation above is a Vandermonde's matrix, the determinant of which is non-zero. Thus $M \overrightarrow{\alpha} = \overrightarrow{\beta}$ has single solution.

As the sampling of vector \overrightarrow{a} uses $k \cdot \lfloor \log p \rfloor$ random bits, the lemma is proven.

Error Reduction Comparison Assume that some algorithm \mathcal{A} uses R bits of randomness with running time T has success probability $\frac{2}{3}$. The table shows running time overhead and number of random bits needed with different kinds of random variables to amplify the success probability of \mathcal{A} to $1 - \epsilon$,

	Running Time	Random bits
Independent r.v.s	$O(T \cdot \log(\frac{1}{\epsilon}))$	$O(R \cdot \log(\frac{1}{\epsilon}))$
2-wise independent r.v.s	$O(T \cdot \frac{1}{\epsilon})$	$2R + 2\log(\frac{1}{\epsilon}) + O(1)$
k-wise independent r.v.s	$O((\frac{1}{\epsilon})^{\frac{2}{k}} \cdot T)$	$kR + 2 \cdot \log(\frac{1}{\epsilon}) + O(k)$

3.2 Probabilistic Method

This is a general technique to show the existence of objects using probabilistic arguments. As an example, we prove the existence of Ramsey graphs using this technique.

Definition 3.5 (k-Ramsey Graphs) G = (V, E) is a k-Ramsey Graph if it is an undirected graph on n vertices (i.e., |V| = n) and the largest independent set and the largest clique in G are of size not larger than k.

Claim 3.6 (Erdös 1947) There exists $(2 \log n + O(1))$ -Ramsey graphs on n vertices.

Proof: Pick a random graph $G(n, \frac{1}{2})$, i.e., there are *n* vertices and each edge is presented with probability $\frac{1}{2}$. Let *k* be a parameter which will be determined later. Let $T \subseteq [n]$ be any set of indices such that |T| = k. Then we have

 $\Pr[G_T \text{ is a clique or an independent set}] \le 2 \cdot 2^{-\binom{k}{2}}$

where G_T denotes the induced subgraph in G by T. For succinctness, we denote the event " G_T is a clique or an independent set" with \mathcal{E}_T . Then

$$\Pr[G \text{ is not } k - \text{Ramsey}] \leq \Pr\left[\bigcup_{T \subseteq [n], |T| = k} \mathcal{E}_T\right]$$

$$(\text{union bound}) \leq \sum_{T \subseteq [n], |T| = k} \Pr[\mathcal{E}_T] \leq \binom{n}{k} \cdot 2 \cdot 2^{-\binom{k}{2}}$$

$$\leq \left(\frac{ne}{k}\right)^k \cdot 2^{-\frac{k(k-1)}{2}} \cdot 2$$
(3.2)

Pick $k = 2\log n + O(1)$ such that

$$\left(\frac{ne}{k}\right)^k \cdot 2^{-\frac{k(k-1)}{2}} \cdot 2 < 1 \tag{3.3}$$

which means there must exist some graph G that is k-Ramsey.