Lecture 2: September 3

2.1 Introduction

Today's lecture provided a proof of the Chernoff bound, a statement of Hoeffding's bound, and a discussion of randomness efficient ways of reducing errors in randomized algorithms.

2.2 Chernoff Bound

Theorem 2.1 Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. $\{0,1\}$ r.v.s and $X=\sum_{i=1}^{n} X_{i}$. Let $\mu=\mathbb{E}[X]$. Then for any $0<\delta<1, \operatorname{Pr}[|X-\mu|>\delta \mu] \leq 2 \cdot \exp \left(\frac{-\mu \delta^{2}}{3}\right)$.

Proof: Recall by Markov's inequality that for any $t \geq 0, \operatorname{Pr}\left[e^{s X} \geq e^{s t}\right] \leq \frac{\mathbb{E}\left[e^{s X}\right]}{e^{s t}}$. Furthermore,

$$
\mathbb{E}\left[e^{s X}\right]=\mathbb{E}\left[e^{s \sum_{i=1}^{n} X_{i}}\right]=\mathbb{E}\left[\prod_{i=1}^{n} e^{s X_{i}}\right]=\prod_{i=1}^{n} \mathbb{E}\left[e^{s X_{i}}\right]=\left(\mathbb{E}\left[e^{s X_{1}}\right]\right)^{n}
$$

where the third and fourth equalities are true due to the independence and identical distribution, respectively, of the X_{i}. Now, let $X_{1}=1$ with probability p and $X_{1}=0$ with probability $1-p$ for some $p \in[0,1]$. Then $\mathbb{E}\left[e^{s X_{1}}\right]=p e^{s}+(1-p)=1+p\left(e^{s}-1\right) \leq \exp \left(p\left(e^{s}-1\right)\right)$ (using $e^{y} \geq 1+y$ for all $\left.y \in \mathbb{R}\right)$. Substituting this into our initial bound from Markov's inequality, we see $\operatorname{Pr}\left[e^{s X} \geq e^{s t}\right] \leq \frac{\exp \left(n p\left(e^{s}-1\right)\right)}{e^{s t}}=\frac{\exp \left(\mu\left(e^{s}-1\right)\right)}{e^{s t}}$ since $\mu=\mathbb{E}[X]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=n p$ by linearity of expectation. Now, let $t=(1+\delta) \mu$ and $s=\log (1+\delta)$. Since $\operatorname{Pr}[X \geq(1+\delta) \mu]=\operatorname{Pr}\left[e^{s X} \geq \exp (s(1+\delta) \mu)\right]$, we see $\operatorname{Pr}[X \geq(1+\delta) \mu] \leq \frac{e^{\mu \delta}}{(1+\delta)^{(1+\delta) \mu}}=\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}$.
From this point, one can use exponential approximations and algebraic manipulations to match the formula as stated.

2.3 Hoeffding's Bound

Let X_{1}, \ldots, X_{n} be independent r.v.s where X_{i} is supported on $\left[a_{i}, b_{i}\right]$ and $X=\sum_{i=1}^{n} X_{i}$. Then for any $t>0$, $\operatorname{Pr}[|X-\mathbb{E}[X]|>t] \leq 2 \cdot \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right)$.

2.4 Randomness Efficient Ways of Reducing Errors in Randomized Algorithms

We begin this discussion with a definition of pairwise (2-wise) independence.

Definition 2.2 $\left\{X_{1}, \ldots, X_{n}\right\}$ are 2-wise independent if for all $i \neq j, X_{i}, X_{j}$ are independent random variables.

Example 2.3 Consider $X_{1}, X_{2}, X_{3} \in\{0,1\}$. Let $\operatorname{Pr}\left[X_{1}=1\right]=\operatorname{Pr}\left[X_{1}=0\right]=1 / 2$ and similarly for X_{2}. Let $X_{3}=X_{1} \oplus X_{2}$. Then, these random variables are 2-wise independent but not i.i.d.

2.4.1 Constructing 2-wise Independent r.v.s

First fix a finite field \mathbb{F}_{p} where p is prime, then sample a, b independently and uniformly on \mathbb{F}_{p}. For each $i \in\{0, \ldots, p-1\}$ define $X_{i}=a i+b$. Here $'+^{\prime}$ is the field operation $(\bmod p)$.

Claim 2.4 $\left\{X_{i}\right\}_{i=0, \ldots, p-1}$ are 2-wise independent.
Proof: Note each X_{i} is uniformly distributed on \mathbb{F}_{p}. For $i \neq j$ and any $\alpha, \beta \in \mathbb{F}_{p}, \operatorname{Pr}_{a, b}\left[X_{i}=\alpha, X_{j}=\beta\right]=$ $\operatorname{Pr}_{a, b}[a i+b=\alpha, a j+b=\beta]$. Solving algebraically, this is equal to $\operatorname{Pr}\left[a=\frac{\alpha-\beta}{i=j}, b=\beta-a j\right]=\frac{1}{p^{2}}$.

A noteworthy part of this construction, is that we were able to construct $p 2$-wise independent (on $[p]$) r.v.'s using only $2\lceil\log p\rceil$ bits.

2.4.2 2-wise Independent r.v.s Needed to Reduce Error of Randomized Algorithms

Now let $L \in B P P$ be a language, $x \in L$ and A an algorithm for L using r bits of randomness. We know $\operatorname{Pr}_{y \in\{0,1\}^{r}}[A(x, y)=1] \geq 2 / 3$, but we want to bound the probability even further to $1-\epsilon$. (We saw in last class using i.i.d. iterations of A requires $O(r \log (1 / \epsilon))$ bits.)

Start by letting Y^{1}, \ldots, Y^{n} be 2 -wise independent r.v.s on \mathbb{F}_{p} where each Y^{i} is uniform on \mathbb{F}_{p} and n is a parameter to be fixed later. Choose any p such that $p>\max \left\{2^{r}, n\right\}$. Define $Z_{i}=A\left(x, Y^{i}\right)\left(Z_{i} \in\{0,1\}\right)$ and output the majority vote. Then Z_{1}, \ldots, Z_{n} are 2 -wise independent and $\mathbb{E}\left[Z_{i}\right] \geq 2 / 3$. Therefore, $Z=\sum_{i=1}^{n} Z_{i}$ implies $\mathbb{E}[Z]=\sum_{i=1}^{n} \mathbb{E}\left[Z_{i}\right] \geq \frac{2}{3} n$. Denote the algorithm that repeats $A n$ times using Y^{1}, \ldots, Y^{n} by A^{\prime}. Then $\operatorname{Pr}\left[A^{\prime}\right.$ is wrong on $\left.x\right]=\operatorname{Pr}[Z \leq n / 2] \leq \operatorname{Pr}[|Z-\mathbb{E}[Z]|>n / 10] \leq 100 \frac{\operatorname{Var}(Z)}{n^{2}}$ (using $2 / 3 n-n / 2>n / 10$ and Chebychev's inequality in the last step).

Claim 2.5 $\operatorname{Var}(Z)=\sum_{i=1}^{n} \operatorname{Var}\left(Z_{i}\right)$
Proof:

$$
\begin{aligned}
\operatorname{Var}(Z) & =\mathbb{E}\left[(Z-\mathbb{E}[Z])^{2}\right]=\mathbb{E}\left[\left(\sum_{i=1}^{n}\left(Z_{i}-\mathbb{E}\left[Z_{i}\right]\right)\right)^{2}\right] \\
& =\sum_{i=1}^{n} \mathbb{E}\left[\left(Z_{i}-\mathbb{E}\left[Z_{i}\right]\right)^{2}\right]+2 \sum_{i<j}\left(\mathbb{E}\left[\left(Z_{i}-\mathbb{E}\left[Z_{i}\right]\right)\right] \mathbb{E}\left[\left(Z_{j}-\mathbb{E}\left[Z_{j}\right]\right)\right]\right)=\sum_{i=1}^{n} \operatorname{Var}\left(Z_{i}\right)
\end{aligned}
$$

since $\mathbb{E}\left[\left(Z_{i}-\mathbb{E}\left[Z_{i}\right]\right)\right]=0$.
Continuing from where we left off before the claim, $\operatorname{Pr}\left[A^{\prime}\right.$ is wrong on $\left.x\right] \leq 100 \frac{\operatorname{Var}(Z)}{n^{2}} \leq 100 \frac{\operatorname{Var}\left(Z_{1}\right)}{n}$. Furthermore, $\operatorname{Var}\left(Z_{1}\right)=\mu \cdot(1-\mu) \leq 2 / 9$, so $\operatorname{Pr}\left[A^{\prime}\right.$ is wrong on $\left.x\right]=O(1 / n)$. Choose $n=O(1 / \epsilon)$ for the desired bound.

2.4.3 Error Reduction Table $(2 / 3 \rightarrow(1-\epsilon))$

Let A be an algorithm for $L \in B P P$ using R bits of randomness and time T.

Error Reduction	$\underline{\text { Randomness Required }}$	Time Required
By i.i.d. Randomness	$\overline{O(R \log (1 / \epsilon))}$	$\overline{O(T \log (1 / \epsilon))}$
By 2-wise Independent	$2 \cdot R+2 \log (1 / \epsilon)+O(1)$	$O(T \cdot 1 / \epsilon)$

