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18.1 Explicit Expanders from Parvaresh-Vardy Codes

In this lecture, we will show that the graph G constructed from the Parvaresh–Vardy codes are unbalanced
vertex expanders.

Theorem 18.1 G is
(
K = hm, A = q − (n− 1) (h− 1)m

)
vertex expander.

Proof: Let T ⊆ Fm+1
q be a subset of the right vertices such that |T | ≤ AK − 1. Let S = List (T ) = {f0 :

Γ (f0) ⊆ T}. We would like to show that |S| ≤ K − 1. To do this, we use the polynomial method.

First, we construct a polynomial Q that vanishes on T . To this end, consider polynomials Q (Y, Y1, . . . Ym)
whose only non-zero coefficients are on monomials of the form Y iMj (Y1, . . . , Ym) for 0 ≤ i ≤ A − 1 and

0 ≤ j ≤ K − 1. Here, Mj (Y1, . . . Ym) =
∏m
l=1 Y

jl−1

l where j =
∑m−1
l=0 jlh

l is the base-h representation of
j. Requiring Q to vanish on T gives us a system of AK − 1 equations in AK unknowns. Thus, we have a
non-trivial set of solutions, from which we pick the one with the smallest Y degree. Note that this implies
that if we write Q as

Q (Y, Y1, . . . , Ym) =

K−1∑
j=0

pj (Y )Mj (Y1, . . . Ym)

where pi (Y ) are univariate, at least one of the pi’s are non-zero mod E(Y ). Here E is the irreducible
polynomial used in the construction of the Parvaresh–Vardy code.

Next, consider the F (Y ) ∈ S. It is easy to see that, for all y ∈ Fq

Q
(
y, f0 (y) , . . . , fm−1 (y)

)
= 0

where fi = fh
i

mod E. This shows that Q
(
y, f0 (y) , . . . , fm−1 (y)

)
which is a univariate polynomial in y of

degree at most A− 1 + (n− 1) (h− 1)m, has q roots. Since we assumed that A− 1 + (n− 1) (h− 1)m < q,
we get that Q

(
y, f0 (y) , . . . , fm−1 (y)

)
≡ 0.

Now, we think of f(Y ) as an element of F = Fq [Y ] /E (Y ). Thus, f (Y ) is a root of the polynomial P (z)
over F given by

P (z) = Q
(
Y, z, zh, . . . zh

m−1
)

mod E(Y )

=

K−1∑
j=0

(
pj (Y ) mod E (Y )

)
zj .

As we noted earlier that this polynomial is non-zero. Since every f (Y ) ∈ S is a root of P , we have that
|S| ≤ deg (P ) ≤ K − 1 as required.

Recall that given N , K, ε > 0 and α > 1, we can set h =
(

logN logK/ε
)1/α

, q to be power of 2 in
(
h1+α, 2h1+α

)
and m = logh (K), to get |L| = qn > N , |R| ≤ qm+1 < q2K1+α, D ≤ q ≤ O

(
logN logK

ε

)1+1/α

and

A ≥ (1− ε) q.
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18.2 Two-source Extractors

Given the definition of seeded extractors, it is natural to ask whether we get any gaurentees if the seed was
not entirely uniform. One can show the following lemma about sources that are deficient.

Lemma 18.2 Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (k, ε) strong seeded extractor. Then,

dTV

((
Y,Ext (X,Y )

)
, (Y, Um)

)
≤ ε2λ,

for every (n, k) source X and (d, d− λ) source Y .

For further discussion on this, see [Raz06]. This discussion on weak seeds further motivates the following
question: Can one extract randomness from two independent weak sources of randomness? This leads to
the definition of two-source extractors.

Definition 18.3 (Two-Source Extractors) A function Ext : {0, 1}n × {0, 1}n → {0, 1}m is said to be a
(k1, k2, ε) two-source extractor if for every (n, k1) source X and (n, k2) source Y , we have

dTV
(
Ext (X,Y ) , Um

)
≤ ε.

18.2.1 Graph view of Two-Source Extractors

There is a natural way to view a function f : [N ]× [M ]→ {0, 1} as a bipartite graph Gf with the left vertices
corresponding to [N ] and the right vertices corresponding to [M ]. Given a pair (x, y) ∈ [N ] × [M ], Gf has
an edge between x and y if and only if f (x, y) = 1. With this construction in hand, we can interpret two
source extractors as bipartite graphs. First, consider the following property that is well-studied in extremal
graph theory.

Definition 18.4 (Bipartite k-Ramsey Graphs) A graph bipartite G is said to be a bipartite k-Ramsey
graph if it does not contain any K ×K complete bipartite subgraph or any K ×K independent set.

Given this definition, we note that two-source extractors with constant error gives us bipartite Ramsey
graphs. This can be seen by observing that flat k sources correspond to 2k subsets and extractor property
gaurentees that roughly half of the possible edges between subsets are present in the graph.

Lemma 18.5 Let Ext : {0, 1}n × {0, 1}n → {0, 1} be a (k, k, 0.1) two-source extractor. Then, GExt is a
bipartite 2k-Ramsey graph on 2n × 2n nodes.

18.2.2 Existence and Constructions of Two-Source Extractors

As with seeded extractors, we can use the probabilistic method to show that two-source extractors do indeed
exist.

Theorem 18.6 (Existence of Two-source Extractors) There exist
(
O (log n) , O (log n) , O (1)

)
two-source

extractors for output length m = 1.
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Proof: Consider a random function f : {0, 1}n × {0, 1}n → {0, 1}. Let X,Y be flat k-sources. We say that
f is bad for X,Y if ∣∣∣∣ Pr

X,Y

[
f (X,Y ) = 1

]
− 0.5

∣∣∣∣ ≥ ε.
Note that

Pr
X,Y

[
f (X,Y ) = 1

]
=

1

k1k2

∑
x,y

f (x, y) .

Since f is a random function, each f(x, y) is an independent Bernoulli random variable. Using the Chernoff
bound, we get

Pr
f

[f is bad for X,Y ] ≤ 2−Ω(ε2k1k2).

Taking the union bound over all flat sources X and Y , we get

Pr
f

[∃X,Y such that f is bad for X,Y ] ≤
(
n

k1

)(
n

k2

)
2−Ω(ε2k1k2).

Using the Stirling approximation for the binomial coefficients, we get

Pr
f

[∃X,Y such that f is bad for X,Y ] ≤
(
ne

k1

)k1 (ne
k2

)k2
2−Ω(ε2k1k2).

Setting k1 = k2 = O (log n) and ε = O (1), we get the probability to be less than one as required.

With a bit more care, one can show that we can show that, we can pick k1 = k2 = log n− 2 log ε+ 1. Next,
we show a simple construction of an explicit two-source extractor. To do this, we define the inner product
function IP : {0, 1}n × {0, 1}n → {0, 1} to be IP (x, y) = 〈x, y〉 where the inner product is taken over F2. In
the next class, we will show that the inner product function is an extractor for sources with more than half
the total possible entropy.

Theorem 18.7 For every δ > 0, IP : {0, 1}n × {0, 1}n → {0, 1} is a
((

1/2 + δ
)
n,
(

1/2 + δ
)
n, 2−Ω(n)

)
two-

source extractor.
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