17.1 Introduction

Today's lecture discusses explicit vertex expanders from list-decodable codes and introduces Parvaresh-Vardy codes.

17.2 Vertex Expanders

Recall a D-left regular bipartite graph G is a (K, A)-bipartite vertex expander with parts L and $R(|L|=$ $N,|R|=M)$ if $\forall S \subset L$ with $|S|=K,|\Gamma(S)| \geq A K$.

We know there are probabilistic bounds for these sizes, namely $A=(1-\epsilon) D, D=O\left(\frac{\log (N / M)}{\epsilon}\right)$, and $M=O\left(\frac{K D}{\epsilon}\right)$. Furthermore, spectral methods do not go beyond $A \sim D / 2$ or $M \ll N$ achieving $D \sim \log (N)$.

Note: our discussion will focus on unbalanced expanders (lots of nodes on the left and few on the right).

17.3 Graphs from Codes and List View of Expanders

Given a (ρ, W)-list decodable code $\mathcal{C}:[N] \rightarrow[M]^{D}$, we can construct a corresponding bipartite graph in the following way. Let $L=[N]$ and $R=M \times[D]$. Then, for $x \in L$, we add an edge from x to $\left(i, \mathcal{C}(x)_{i}\right)$ for $1 \leq i \leq D$. In other words, $\Gamma(x)=\left\{\left(i, \mathcal{C}(x)_{i}\right): i \in[D]\right\}$. Notice that this graph is left D-regular. See the figure below for an illustration.

We can also consider the list view of expanders. For any $T \subset R$, define $\operatorname{List}(T)=\{x \in L: \Gamma(x) \subset T\}$. Similarly, for $\epsilon>0, \operatorname{List}(T, \epsilon)=\{x \in L:|\Gamma(x) \cap T| \geq \epsilon D\}$. Note: $\operatorname{List}(T)=\operatorname{List}(T, 1)$.

Claim 17.1 Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{D}\right)$ be a received corrupted word. If $T_{\lambda}=\left\{\left(i, \lambda_{i}\right): i \in[D]\right\}$, then $\left|\operatorname{List}\left(T_{\lambda}, \rho\right)\right| \leq$ W.

Proof: If $x \in \operatorname{List}\left(T_{\lambda}, \rho\right)$, that means $\Delta(\mathcal{C}(x), \lambda) \leq(1-\rho) D$. Since \mathcal{C} is (ρ, W)-list decodable, there are at most W such x 's.

Remark: in general, we can't say much about List.

On the other hand, G is a $(K, A) D$-regular bipartite vertex expander \Longleftrightarrow for any $T \subset R,|T| \leq$ $A K-1,|\operatorname{List}(T)| \leq K-1$. (Observe that the latter is simply the contrapositive of the former.)

*We need to bound $\operatorname{List}(T, 1)$ for all "small" $T \mathrm{~s}$ but $L D$ codes bound "structured" $T \mathrm{~s}$.
*For expanders, we really care about exact size of $\operatorname{List}(T, 1)$ (even constants matter!!). But for list decodable codes, exact size of List does not matter.

17.4 Parvaresh-Vardy Codes

Fix a finite field \mathbb{F}_{q} and message space $f \in$ Poly $_{\leq n-1}$ [univariate polynomials over \mathbb{F}_{q} with degree $\leq n-1$]. The encoding will map messages from \mathbb{F}_{q}^{n} to $\mathbb{F}_{q^{m}}^{q}$ with $\mathcal{C} \subset \Sigma^{q},|\Sigma|=q^{m}=\left|\mathbb{F}_{q^{m}}\right|$. Intuitively, we're taking a polynomial f and sending it to a set of polynomials f_{1}, \ldots, f_{m} and evaluating each f_{i} at all points in \mathbb{F}_{q}.

Let $E(x)$ be an irreducible polynomial of degree n over \mathbb{F}_{q}. Consider the extension field $F=\mathbb{F}_{q}[x] / E(x)$. Think of $f \in F$ and compute $f_{i}=(f)^{h^{i}}, i=0,1, \ldots, m-1$ (note h is not yet set). Also, note $f_{0}=f$, and we can think of each $f_{i} \in$ Pol $_{\leq n-1}$.

Then, the list-decoding radius of PV code (with appropriate choice of parameters) is $1-r^{2 / 3}$ (where r is the relative rate). Recall for RS it's $1-r^{1 / 2}$.

We can now consider the graph G from the PV code. We have $L=\mathbb{F}_{q}^{n}=\leq n-1$ and $\Gamma(f, y)=\left[y, f_{0}(y), \ldots f_{m-1}(y)\right]$ where $f \in$ Poly $_{\leq n-1}$ and $y \in \mathbb{F}_{q}$. Note that G is a q-left regular graph.

Theorem 17.2 G is a $\left(K=h^{m}, A=q-(n-1)(h-1) m\right)$ vertex expander.

We will see the proof next class.

The takeaway is that we can construct a highly-unbalanced graph with near-optimal expansion.

If we're given $N, K, \epsilon, \alpha>1$, then we define $n=\log _{2}(N), k=\log _{2}(K), h=(n k / \epsilon)^{1 / \alpha}, q \in\left(h^{1+\alpha}, 2 h^{1+\alpha}\right)$ a power of 2 , and $m=\log _{h}(K)$. Then, $|L|=q^{n} \geq N,|R|=q^{m+1} \leq q^{2} K^{1+\alpha}, D=q \leq O\left(\frac{\log (N) \log (K)}{\epsilon}\right)^{1+1 / \alpha}$ and $A \geq(1-\epsilon) q$.

