16.1 Efficient List Decoding for Reed-Solomon Codes

Recall, that a code $C \subseteq \Sigma^{n}$ is (ρ, L)-list decodable if $\forall v \in \Sigma^{n},\left|\operatorname{Ball}\left(v, \rho_{n}\right) \cap C\right| \leq L$. Also recall the Johnson Bound, which states that if code C has relative min distance $1-\epsilon$, then it has list decoding radius $1-\sqrt{\epsilon}-o(1)$. Thus the Reed-Solomon (RS) $[n, k, d=n-(k-1)]$ code has list-decoding radius at least $1-\sqrt{\frac{k}{n}}$.

We will see a simpler version of Sudan's list decoding algorithm for RS codes that works till a relative radius of $1-\frac{2 k}{\sqrt{n}}$.
Recall that Poly ${ }_{\leq m}$ denotes the set of polynomials of degree less than or equal to m. The list decoding problem can be framed as follows: given $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$, find all $p \in \operatorname{Pol} y_{\leq k-1}$ such that $\operatorname{Pr} r_{x \sim \mathbb{F}_{q}}[f(x)=$ $p(x)] \geq \gamma$, where $\gamma \geq 2 k / \sqrt{n}$.

On a high level, the algorithm generalizes the Welch-Berlekamp algorithm.
We use the following algorithm:
Step a : Find a nonzero bivariate polynomial $Q(x, y)$ over \mathbb{F}_{q} satisfying the following properties:

- $\operatorname{deg}_{x}(Q) \leq \sqrt{n}\left(\operatorname{deg}_{x}(Q)\right.$ is the degree of Q with respect to x (i.e. the degree of Q as a univariate polynomial with y held constant).
- $\operatorname{deg}_{y}(Q) \leq \sqrt{n}$
- $\forall x \in \mathbb{F}_{q}, Q(x, f(x))=0$.

Step b : Find all factors of $Q(x, y)$ of the form $y-p(x)$. For each such factor, check if $p(x) \in p o l y_{\leq k-1}$ and $\operatorname{Pr}[f(x)=p(x)] \geq \gamma$.
If this check results in YES, add p to the output list L.
Now, we claim that this algorithm works correctly if $\gamma \geq \frac{2 k}{\sqrt{n}}$.
The first part of this proof is showing that there exists a nontrivial Q. Write $Q(x, y)=\sum_{i=0, j=0}^{\sqrt{n}} \lambda_{i j} x^{i} y^{j}$. This equation has $(\sqrt{n}+1)(\sqrt{n}+1)>n$ unknowns, while the constraints on Q determine $q=n$ equations. Thus, there exists nontrivial Q, since there are more unknowns than equations defining Q. We use the fact that the factor finding step can be done efficiently.
We now need the following result.

Theorem 16.1 Bezout's Theorem (special case): Given any two polynomials $A(x, y), B(x, y)$ of degree d_{1} and d_{2} respectively, if $\left|\left\{(x, y) \in \mathbb{F}_{q}^{2}: A(x, y)=0, B(x, y)=0\right\}\right|>d_{1} d_{2}$, then both polynomials share a common factor.

Consider a codeword $p(x) \in \operatorname{Ball}(z,(1-\gamma) n)$. Let the received word be $z=(f(0), f(1), \ldots, f(q-1))$. By the definition of the ball, $\operatorname{Pr}[p(x)=f(x)] \geq \gamma$. Thus, we claim that $y-p(x)$ and $Q(x, y)$ have at least γn common zeros. This is because at each point where $f(x)=p(x), y-p(x)=0$ at the point $(x, f(x))$. Further, by definition, Q is zero at all points $(x, f(x))$.
$\operatorname{deg}(y-p(x)) \leq k-1$, and $\operatorname{deg}(Q(x, y)) \leq 2 \sqrt{n}$, both by definition of these polynomials. Thus, choosing γ such that $\gamma n \geq 2 k \sqrt{n}, \gamma>\frac{2 k}{\sqrt{n}}$, this would lead to $y-p(x)$ and $Q(x, y)$ having a common factor; hence $(y-p(x)) \mid Q(x, y)$. This completes the proof.

16.2 Seeded Extractors from error-correcting codes

Lemma 16.2 Let C be an $[n, k, d]_{q}$ code, with $d=n\left(1-\gamma-\frac{1}{q}\right)$. Define Ext $: \mathbb{F}_{q}^{k} \times[n] \rightarrow \mathbb{F}_{q}$, which is $\operatorname{Ext}(x, y)=C(x)_{y}$ (slight notation overloading here, C is both the code and the encoder function). This extractor is a $\left(\log \left(\frac{1}{\delta}\right), \sqrt{2 q \delta}\right)$ strong seeded extractor.
The proof is very similar to that of the Leftover Hash Lemma (proved in Lecture 12). Let X be a weak-source with min-entropy $\log (1 / \delta)$ and Y be uniformly distributed on \mathbb{F}_{q}. Let cp denote the collision probability. We have

$$
c p(Y, \operatorname{Ext}(X, Y)) \leq c p(Y)\left(c p(X)+\max _{x \neq x^{\prime}, x, x^{\prime} \in \mathbb{F}_{q}, y \sim U_{m}} \operatorname{Pr}\left[\operatorname{Ext}(x, y)=\operatorname{Ext}\left(x^{\prime}, y\right)\right]\right.
$$

Considering the last quantity, $\operatorname{Pr}\left[C(x)_{y}=C\left(x^{\prime}\right)_{y}\right] \leq 1-\frac{d}{n}$ by the distance of the code and the definition of the extractor. Thus,

$$
c p(Y, \operatorname{Ext}(X, Y)) \leq \frac{1}{n q}(1+2 \gamma q)
$$

Using a lemma from a previous class (Lecture 11), we conclude $\mid\left(Y, \operatorname{Ext}(X, Y)-\left(U_{[N]}, U_{\mathbb{F}_{q}}\right) \mid \leq \sqrt{2 q \delta}\right.$.

