### 15.1 Unique decoding of Reed-Solomon codes

Recall that each message of the $[n, k, d]_{q}$ Reed-Solomon (RS) code corresponds to a polynomial $p$ of degree at most $k-1$ over $\mathbb{F}_{q}(n \leq q)$ and is encoded as the evaluation of $p$ at $n$ distinct points, $\left(p\left(\beta_{1}\right), \ldots, p\left(\beta_{n}\right)\right) \in \mathbb{F}_{q}^{n}$. Earlier, we proved that the distance of this code satisfies $d=n-k+1$, achieving the Singleton bound. Today, we will begin by completing our description and analysis of the Welch-Berlekamp unique decoding algorithm for Reed-Solomon.

To start, we have a corrupted word $y \in \mathbb{F}_{q}^{n}$ (we will take $q=n$ ) and view it as a function $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$, in that $y=\left(f\left(\beta_{1}\right), \ldots, f\left(\beta_{n}\right)\right)$. Our promise is that there exists some $p \in$ Poly $_{\leq k-1}$ such that

$$
\operatorname{Pr}_{x \in \mathbb{F}_{q}}[p(x) \neq f(x)]=\frac{e}{q} \leq \frac{1}{q}\left\lfloor\frac{d-1}{2}\right\rfloor
$$

where $e$ counts the number of errors, i.e. the cardinality of $T=\left\{x \in \mathbb{F}_{q}: f(x) \neq p(x)\right\}$. Thus, we have $e \leq\lfloor(n-k) / 2\rfloor$. Our goal is to find $p$ in poly $(n)$ time.

The key idea is to consider an error locating polynomial $E$ of degree $e$ such that $E(x)=0$ if and only if $f(x) \neq p(x)$. Then, we have that

$$
E(x) f(x)=E(x) p(x)
$$

for each $x \in \mathbb{F}_{q}$. Expressing the polynomials as $E(x)=\sum_{i=0}^{e} e_{i} x^{i}$ and $p(x)=\sum_{i=0}^{k-1} m_{i} x^{i}$, this gives a system of quadratic equations which is NP-hard to solve in general. To make this tractable, we will use a "linearizing trick", solving for

$$
N(x)=E(x) p(x)
$$

a polynomial of degree at most $e+k-1$. Now, we can full describe the procedure.

## Welch-Berlekamp Algorithm

Step 1: Compute a non-trivial solution to the following homogeneous system of linear equations

$$
\begin{aligned}
& N(x)=E(x) f(x) \quad \forall x \in \mathbb{F}_{q} \\
& N(x)=\sum_{i=0}^{t+k-1} n_{i} x^{i} \quad E(x)=\sum_{i=0}^{t} e_{i} x^{i}
\end{aligned}
$$

for the smallest $t$ possible, starting at $t=\lfloor(n-k) / 2\rfloor \geq e$.
Step 2: If a solution is found and $E(x)$ divides $N(x)$, return $N(x) / E(x)$. Otherwise, the error is uncorrectable, and the promise that $e \leq\lfloor(n-k) / 2\rfloor$ has been broken.

These linear equations can be solved efficiently, so it just remains to prove correctness.

Claim 15.1 There exists a valid solution to Step 1.

Proof: Simply take $E^{*}=\prod_{\alpha \in T}(x-\alpha)$ and $N^{*}(x)=E^{*}(x) p(x)$. This implies that the value of $t$ selected for the solution is at $\operatorname{most} \operatorname{deg}\left(E^{*}\right)=e$.

Claim 15.2 If $\left(N_{1}, E_{1}\right)$ and $\left(N_{2}, E_{2}\right)$ are two valid outputs from Step 1, then $N_{1} / E_{1}=N_{2} / E_{2}$.
Proof: We know that

$$
N_{1}(x) E_{2}(x)=f(x) E_{1}(x) E_{2}(x)=N_{2}(x) E_{1}(x)
$$

for each $x \in \mathbb{F}_{q}$, so $N_{1} E_{2}-N_{2} E_{1}$ has $q=n$ roots. Further, this polynomial has degree at most

$$
(e+k-1)+e=2 e+k-1 \leq n-1
$$

so it must in fact be the zero polynomial.

### 15.2 List decoding

The motivation for list decoding is to "go beyond $d / 2$ errors" and, for any potential message, to provide a reasonably small set of possible codewords which might have produced it.

Definition 15.3 $A$ code $\mathcal{C} \subset \Sigma^{n}$ is $(\rho, L)$-list decodable if, for each $y \in \Sigma^{n}$,

$$
|\operatorname{Ball}(y, \rho n) \cap \mathcal{C}| \leq L,
$$

where $\operatorname{Ball}(y, r):=\left\{w \in \Sigma^{n}: \Delta(y, w) \leq r\right\}$.
List decodable codes are useful if $L \leq \operatorname{poly}(n)$ and $\rho>\delta / 2$, particularly if $\rho \rightarrow \delta-o(1)$. Next, we introduce the Johnson bound, which "translates good distance to good list decodable radius."

Theorem 15.4 (Johnson Bound) If $\mathcal{C} \subset \mathbb{F}_{q}^{n}$ is an error-correcting code with relative distance $\delta(\mathcal{C})=1-\varepsilon$ (i.e. $d=(1-\varepsilon) n$ ), then $\mathcal{C}$ is a $(1-\sqrt{\varepsilon}-o(1)$, poly $(n))$-list decodable code.

For the $[n, k, d]_{q}$ Reed-Solomon code, with $d=n-k+1$, this translates to a list decodable radius of $1-\sqrt{(k-1) / n} \sim 1-\sqrt{r}$. Information theoretic methods give a lower bound of $1-r-o(1)$, but is an open question whether this can be achieved. Before continuing with the proof of the Johnson bound, we observe two notable drawbacks. First, it is a combinatorial bound that is not algorithmic, and, second, it is not tight for all codes.

Proof: Fix $y \in \mathbb{F}_{q}$, and let $c_{1}, c_{2}, \ldots, c_{L}$ be the codewords in $\operatorname{Ball}(y, \rho n)$. Consider the following graph,

where $c_{i}, j$ is an edge if and only if $\left(c_{i}\right)_{j}=y_{j}$. Observe that (i) the left degree of any $c_{i}$ is at least $(1-\rho) n$ and that (ii) $\left|N\left(c_{i}\right) \cap N\left(c_{j}\right)\right| \leq n-d$, where $N(v)$ denotes the neighborhood of vertex $v$.

Next, we'll consider the expected number of common neighbors between random distinct codewords $c_{i}, c_{j}$. Letting $\lambda_{k}$ denote the degree of right vertex $k$ and $\bar{\lambda}$ denote the mean degree of a right vertex, we have

$$
n-d \geq \mathbb{E}\left[\left|N\left(c_{i}\right) \cap N\left(c_{j}\right)\right|\right]=\frac{\sum_{k=1}^{n}\binom{\lambda_{k}}{2}}{\binom{L}{2}} \geq \frac{n\binom{\bar{\lambda}}{2}}{\binom{L}{2}}
$$

where the second inequality follows from the convexity of the function $x \mapsto\binom{x}{2}$. By double counting, we also know that $\bar{\lambda} \geq(1-\rho) L$, so it follows that

$$
\begin{aligned}
& (n-d) L(L-1) \geq n \bar{\lambda}(\bar{\lambda}-1) \\
\Longleftrightarrow & (n-d)(L-1) \geq(1-\rho)^{2} L n-(1-\rho) n .
\end{aligned}
$$

After a bit of algebra, we find that

$$
L \leq \frac{1-\rho}{(1-\rho)^{2}-\varepsilon}
$$

and choosing $\rho=1-\sqrt{\varepsilon}-1 / \operatorname{poly}(n)$ gives the desired $L \leq \operatorname{poly}(n)$ bound.

