Lecture 15: October 22

Lecturer: Eshan Chattopadhyay

Fall 2019

15.1 Unique decoding of Reed-Solomon codes

Recall that each message of the $[n, k, d]_q$ Reed-Solomon (RS) code corresponds to a polynomial p of degree at most k-1 over \mathbb{F}_q $(n \leq q)$ and is encoded as the evaluation of p at n distinct points, $(p(\beta_1), \ldots, p(\beta_n)) \in \mathbb{F}_q^n$. Earlier, we proved that the distance of this code satisfies d = n - k + 1, achieving the Singleton bound. Today, we will begin by completing our description and analysis of the Welch-Berlekamp unique decoding algorithm for Reed-Solomon.

To start, we have a corrupted word $y \in \mathbb{F}_q^n$ (we will take q = n) and view it as a function $f : \mathbb{F}_q \to \mathbb{F}_q$, in that $y = (f(\beta_1), \ldots, f(\beta_n))$. Our promise is that there exists some $p \in \text{Poly}_{\leq k-1}$ such that

$$\Pr_{x \in \mathbb{F}_q} \left[p(x) \neq f(x) \right] = \frac{e}{q} \le \frac{1}{q} \left\lfloor \frac{d-1}{2} \right\rfloor,$$

where e counts the number of errors, i.e. the cardinality of $T = \{x \in \mathbb{F}_q : f(x) \neq p(x)\}$. Thus, we have $e \leq \lfloor (n-k)/2 \rfloor$. Our goal is to find p in poly(n) time.

The key idea is to consider an error locating polynomial E of degree e such that E(x) = 0 if and only if $f(x) \neq p(x)$. Then, we have that

$$E(x)f(x) = E(x)p(x)$$

for each $x \in \mathbb{F}_q$. Expressing the polynomials as $E(x) = \sum_{i=0}^{e} e_i x^i$ and $p(x) = \sum_{i=0}^{k-1} m_i x^i$, this gives a system of quadratic equations which is NP-hard to solve in general. To make this tractable, we will use a "linearizing trick", solving for

$$N(x) = E(x)p(x),$$

a polynomial of degree at most e + k - 1. Now, we can full describe the procedure.

Welch-Berlekamp Algorithm

Step 1: Compute a non-trivial solution to the following homogeneous system of linear equations

$$N(x) = E(x)f(x) \quad \forall x \in \mathbb{F}_q$$
$$N(x) = \sum_{i=0}^{t+k-1} n_i x^i \quad E(x) = \sum_{i=0}^t e_i x^i$$

for the smallest t possible, starting at $t = \lfloor (n-k)/2 \rfloor \ge e$. Step 2: If a solution is found and E(x) divides N(x), return N(x)/E(x). Otherwise, the error is uncorrectable, and the promise that $e \le \lfloor (n-k)/2 \rfloor$ has been broken.

These linear equations can be solved efficiently, so it just remains to prove correctness.

Claim 15.1 There exists a valid solution to Step 1.

Proof: Simply take $E^* = \prod_{\alpha \in T} (x - \alpha)$ and $N^*(x) = E^*(x)p(x)$. This implies that the value of t selected for the solution is at most $\deg(E^*) = e$.

Claim 15.2 If (N_1, E_1) and (N_2, E_2) are two valid outputs from Step 1, then $N_1/E_1 = N_2/E_2$.

Proof: We know that

 $N_1(x)E_2(x) = f(x)E_1(x)E_2(x) = N_2(x)E_1(x)$

for each $x \in \mathbb{F}_q$, so $N_1 E_2 - N_2 E_1$ has q = n roots. Further, this polynomial has degree at most

 $(e+k-1) + e = 2e + k - 1 \le n - 1,$

so it must in fact be the zero polynomial.

15.2 List decoding

The motivation for list decoding is to "go beyond d/2 errors" and, for any potential message, to provide a reasonably small set of possible codewords which might have produced it.

Definition 15.3 A code $C \subset \Sigma^n$ is (ρ, L) -list decodable if, for each $y \in \Sigma^n$,

 $|\operatorname{Ball}(y,\rho n) \cap \mathcal{C}| \leq L,$

where $\operatorname{Ball}(y,r) := \{ w \in \Sigma^n : \Delta(y,w) \le r \}.$

List decodable codes are useful if $L \leq \text{poly}(n)$ and $\rho > \delta/2$, particularly if $\rho \to \delta - o(1)$. Next, we introduce the Johnson bound, which "translates good distance to good list decodable radius."

Theorem 15.4 (Johnson Bound) If $C \subset \mathbb{F}_q^n$ is an error-correcting code with relative distance $\delta(C) = 1 - \varepsilon$ (*i.e.* $d = (1 - \varepsilon)n$), then C is a $(1 - \sqrt{\varepsilon} - o(1), \operatorname{poly}(n))$ -list decodable code.

For the $[n, k, d]_q$ Reed-Solomon code, with d = n - k + 1, this translates to a list decodable radius of $1 - \sqrt{(k-1)/n} \sim 1 - \sqrt{r}$. Information theoretic methods give a lower bound of 1 - r - o(1), but is an open question whether this can be achieved. Before continuing with the proof of the Johnson bound, we observe two notable drawbacks. First, it is a combinatorial bound that is **not** algorithmic, and, second, it is not tight for all codes.

Proof: Fix $y \in \mathbb{F}_q$, and let c_1, c_2, \ldots, c_L be the codewords in Ball $(y, \rho n)$. Consider the following graph,

_

where c_i, j is an edge if and only if $(c_i)_j = y_j$. Observe that (i) the left degree of any c_i is at least $(1 - \rho)n$ and that (ii) $|N(c_i) \cap N(c_j)| \le n - d$, where N(v) denotes the neighborhood of vertex v.

Next, we'll consider the expected number of common neighbors between random distinct codewords c_i, c_j . Letting λ_k denote the degree of right vertex k and $\bar{\lambda}$ denote the mean degree of a right vertex, we have

$$n-d \ge \mathbb{E}[|N(c_i) \cap N(c_j)|] = \frac{\sum_{k=1}^n \binom{\lambda_k}{2}}{\binom{L}{2}} \ge \frac{n\binom{\overline{\lambda}}{2}}{\binom{L}{2}},$$

where the second inequality follows from the convexity of the function $x \mapsto {\binom{x}{2}}$. By double counting, we also know that $\bar{\lambda} \ge (1-\rho)L$, so it follows that

$$(n-d)L(L-1) \ge n\bar{\lambda}(\bar{\lambda}-1)$$
$$\iff (n-d)(L-1) \ge (1-\rho)^2 Ln - (1-\rho)n.$$

After a bit of algebra, we find that

$$L \le \frac{1-\rho}{(1-\rho)^2 - \varepsilon}$$

and choosing $\rho = 1 - \sqrt{\varepsilon} - 1/\operatorname{poly}(n)$ gives the desired $L \leq \operatorname{poly}(n)$ bound.