Lecture 14: October 17

14.1 Preliminary and Notation

Definition 14.1 (Shannon entropy) Shannon Entropy of random variable X is defined as:

$$
H(X):=\sum_{x \in \operatorname{supp}(x)} p(x) \log \left(\frac{1}{p(x)}\right), p(x):=\operatorname{Pr}[X=x]
$$

Definition 14.2 (Conditional entropy) The conditional Entropy of random variable Y given X is defined as:

$$
H(Y \mid X):=\sum_{x \in \operatorname{supp}(x), y \in \operatorname{supp}(y)} p(x, y) \log \left(\frac{p(x)}{p(x, y)}\right), p(x):=\operatorname{Pr}[X=x], p(x, y)=\operatorname{Pr}[X=x, Y=y]
$$

Denote the Shannon entropy of a Bernoulli random variable X as $H(p)$, where X equals to 1 with probability p, and 0 with probability $1-p$. Then $H(p)=p \log \left(\frac{1}{p}\right)+(1-p) \log \left(\frac{1}{1-p}\right)$.

Theorem 14.3 (Chain rule of Shannon entropy)

$$
H(X, Y)=H(X)+H(Y \mid X)
$$

Proof: Let $p(x)=\operatorname{Pr}[X=x], p(x, y)=\operatorname{Pr}[X=x, Y=y]$ and $p(y \mid x)=\operatorname{Pr}[Y=y \mid X=x]$. Then we have:

$$
\begin{aligned}
H(X, Y) & =\sum p(x, y) \log \left(\frac{1}{p(x, y)}\right) \quad \text { (by definition) } \\
& =\sum p(x) p(y \mid x)\left(\log \left(\frac{1}{p(x)}\right)+\log \left(\frac{1}{p(y \mid x)}\right)\right) \\
& \left.=\sum_{x} p(x)\left(\sum p(y \mid x)\right) \log \left(\frac{1}{p(x)}\right)+\sum_{x} p(x)\left(\sum p(y \mid x)\right) \log \left(\frac{1}{p(y \mid x)}\right)\right) \\
& =H(X)+H(Y \mid X)
\end{aligned}
$$

Corollary 14.4 (Chian rule of n random variables)

$$
H\left(X_{1}, \ldots, X_{n}\right)=\sum_{i=1}^{n} H\left(X_{i} \mid X_{<i}\right)
$$

where $X_{<i}=\left(X_{1}, \ldots, X_{i-1}\right)$.
Proof: By induction on n.

14.2 Existence of Codes

What kinds of codes exist? We will analyze binary codes. Informally, we want to show that
Theorem 14.5 (Informall) $\exists(n, k, d)_{2}$ codes where $k=\Omega(n), d=\Omega(n)$. That is, there exists binary codes with constant relative rates and constant relative distances.

More formally,
Theorem 14.6 (Gilbert-Varshamov bound) $\forall 0<\delta<\frac{1}{2}, 0<\varepsilon \leq 1-H(\delta)$, there exists an $(n, k, d)_{2}$ code where $\frac{k}{n} \geq 1-H(\delta)-\varepsilon, \frac{d}{n} \geq \delta$.

Proof: We will use a greedy algorithm to show the existence of claimed binary codes:

Greedy Algorithm

- $\mathcal{C} \leftarrow \emptyset$
- while $\exists v \in\{0,1\}^{n}$ s.t. $\Delta(v, \mathcal{C}) \geq d$, add v to \mathcal{C}.
- Output \mathcal{C}.

Definition 14.7 (Hamming Ball) $\forall v \in\{0,1\}^{n}, r \geq 0$, define $\operatorname{Ball}(v, r):=\{w \mid \Delta(v, w) \leq r\}$.
Definition 14.8 (Volume of Ball) $\forall n \in \mathbb{N}, r \leq n$, define $\operatorname{Vol}(n, r):=\left|\operatorname{Ball}\left(0^{n}, r\right)\right|$. Notice that $\forall v \in$ $\{0,1\}^{n},|\operatorname{Ball}(v, r)|=\left|\operatorname{Ball}\left(0^{n}, r\right)\right|$.

Claim 14.9

$$
\bigcup_{c \in \mathcal{C}} \operatorname{Ball}(c, d-1)=\{0,1\}^{n}
$$

Proof of: 14.9
Suppose $v \in\{0,1\}^{n}$ is not in this union, then $\Delta(v, \mathcal{C}) \geq d$. The greedy algorithm would thus add v to \mathcal{C}, which indicates that v should then be included in this union. And we get a contradiction.

Using claim 14.9 we know that $\operatorname{Vol}(n, d-1) \cdot|\ell| \geq 2^{n}$, which means that $\operatorname{Vol}(n, d-1) \cdot 2^{k} \geq 2^{n}$. Now we are left with the evaluation $\operatorname{Vol}(n, d-1)$. We'll show the following bound.

Claim 14.10 $\operatorname{Vol}(n, r) \leq 2^{n H\left(\frac{r}{n}\right)}, \forall r \leq \frac{n}{2}$
Proof of: 14.10
Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be a random variable that is uniform over $\operatorname{Ball}\left(0^{n}, r\right)$. Then the entropy of $H(X)=$ $\log (\operatorname{Vol}(n, r))$. Notice that

$$
\begin{aligned}
H\left(X_{1}, \ldots, X_{n}\right) & =\sum_{i=1}^{n} H\left(X_{i} \mid X_{<i}\right) \\
& \leq \sum_{i=1}^{n} H\left(X_{i}\right)=n H\left(X_{1}\right) \\
& \leq n \cdot H\left(\frac{r}{n}\right)
\end{aligned}
$$

The last step holds because $n \cdot \mathbb{E}\left[X_{1}\right]=\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right] \leq r$, which means that $\mathbb{E}\left[X_{1}\right]=\operatorname{Pr}\left[X_{1}=1\right] \leq \frac{r}{n}$. Thus $\operatorname{Vol}(n, r) \leq 2^{n H\left(\frac{r}{n}\right)}$.

Therefore we have $2^{n-k} \leq \operatorname{Vol}(n, d-1) \leq 2^{n \cdot H\left(\frac{d}{n}\right)}$, which means that $1-\frac{k}{n} \leq H\left(\frac{d}{n}\right)$. Thus we have $\frac{k}{n} \geq 1-H(\delta)-\varepsilon$.

14.3 Unique Decoding of RS Codes

Definition 14.11 Define Poly $\leq_{w}:=$ univariate polynomials over \mathbb{F}_{q} of degree less than or equal to w.
Then the message space of RS code is $\operatorname{Poly}_{\leq k-1}: p(x)=\sum_{i=0}^{k-1} \alpha_{i} x^{i}$ where $\left(\alpha_{0}, \ldots, \alpha_{k-1}\right) \in \mathbb{F}_{q}^{k}$. The encoding is the evaluation of this polynomial on n distinct points: $\left(p\left(\beta_{1}\right), \ldots, p\left(\beta_{n}\right)\right)$. Observe that this is a linear code.

Decoding question: let $\left(f\left(\beta_{1}\right), f\left(\beta_{2}\right), \ldots, f\left(\beta_{n}\right)\right)$ for some $f: \mathbb{F}_{q} \mapsto \mathbb{F}_{q}$ be a corrupted codeword. If the number of errors is small, can we recover p ?

Information theoretically, we can recover up to $\left\lfloor\frac{d-1}{2}\right\rfloor$ errors. The intuition is simple: if we have e, where $\left\lfloor\frac{d-1}{2}\right\rfloor$, then the corrupted codeword f might be within e distance from two codewords, which makes it impossible for the decoder to uniquely decode from f. As in the figure, f is within distance e to p_{1} and p_{2} if $e>\left\lfloor\frac{d-1}{2}\right\rfloor$:

Figure 14.1: $\Delta\left(p_{1}, p_{2}\right)=d, e>\left\lfloor\frac{d-1}{2}\right\rfloor, \Delta\left(f, p_{1}\right) \leq e, \Delta\left(f, p_{2}\right) \leq e$, so the decoder doesn't know which one is being modified.

Formally, the decoding problem is defined as:

Problem 14.12 given a function $f: \mathbb{F}_{q} \mapsto \mathbb{F}_{q}$, and the promise that $\exists p \in$ Poly $\leq k-1$ s.t. the $\frac{e}{q}=$ $\operatorname{Pr}_{x \in \mathbb{F}_{q}}[f(x) \neq p(x)] \leq\left\lfloor\frac{d-1}{2}\right\rfloor \frac{1}{q}$, can we recover $p(x)$ in poly (n) time?

14.3.1 Welch-Berlekamp Algorithm

For convenience, define $T=\left\{\beta_{i}: f\left(\beta_{1}\right) \neq p\left(\beta_{i}\right)\right\}$ to be the set of all corrupted positions. Then $|T| \leq e$.
Definition 14.13 (Error-locator polynomial) $E(x)$ is a polynomial over \mathbb{F}_{q} such that $E\left(\beta_{i}\right)=0$ iff $\beta_{i} \in T$.

For example, the error locator polynomial can be defined as $E(x)=\prod_{\beta_{i} \in T}\left(x-\beta_{i}\right)$.

Observation 14.14

$$
\begin{equation*}
\forall x \in \mathbb{F}_{q}, E(x) p(x)=E(x) f(x) \tag{*}
\end{equation*}
$$

As $E(x)$ is of degree e and the degree of $p(x)$ is smaller than or equal to $k-1,(*)$ is a system of n equations on $e+k-1<n$ variables which are the unknown coefficients of $E(x)$ and $p(x)$. Thus, solving this system would give us the error locator polynomial $E(x)$ as well as the correct codeword $p(x)$. However, $(*)$ is a quadratic system, which is a NP-hard problem in general. We need to figure out an alternative way of decoding in the next lecture.

