12.1 Overview

This lecture covers the following material:

- (continued from Lecture 11) Constructing seeded extractors from hash functions
- Constructing seeded extractors from expanders

Finally, recall the notation we used, where a capital $K=2^{k}$ for some variable k. So $M=2^{m}, D=2^{d}$, etc.

12.2 Extractors from Universal Hash Families

Recall the following lemma which we proved last class, where if the collision probability is small, we can also bound the statistical distance.

Lemma 12.1 If D is a distribution on $\{0,1\}_{m}$, with $\operatorname{cp}(D) \leq \frac{1+\delta}{M}$, then

$$
\left|D-U_{[M]}\right| \leq \sqrt{\delta}
$$

Now, we try to construct an extractor from a universal hash family.

Lemma 12.2 (Leftover Hash Lemma) Denote a universal hash family $\mathcal{H}: h:[N] \rightarrow[M]$ s.t. $|\mathcal{H}|=N$. For any (n, k)-source X, then

$$
H(X), H \approx_{\epsilon} U_{m}, H
$$

where $\epsilon=2^{\frac{m-k}{2}-1}$ and $H \stackrel{R}{\leftarrow} \mathcal{H}$ (and \approx_{ϵ} denotes statistical closeness).

Proof: We examine the collision probability

$$
\begin{aligned}
\operatorname{cp}(H(X), H) & =\underset{\substack{h, h^{\prime} \sim H \\
x, x^{\prime} \sim X}}{\operatorname{Pr}}\left[(h(x), h)=\left(h^{\prime}\left(x^{\prime}\right), h^{\prime}\right)\right] \\
& =\operatorname{cp}(H) \cdot \operatorname{Pr}\left[h(x)=h\left(x^{\prime}\right)\right] \\
& \leq \operatorname{cp}(H)\left(\operatorname{cp}(X)+\max _{\substack{x \neq x^{\prime} \\
x \in \operatorname{supp}(X)}} \operatorname{Pr}_{h \sim H}\left[h(x)=h\left(x^{\prime}\right)\right]\right)
\end{aligned}
$$

Observe that:

$$
\begin{aligned}
\operatorname{cp}(H) & =\frac{1}{N}(\text { because there are } N \text { hash functions) } \\
\operatorname{cp}(X) & =\sum_{x \in\{0,1\}^{m}}\left(\operatorname{Pr}_{x^{\prime} \sim X}\left[x^{\prime}=x\right]\right)^{2} \\
& \leq \frac{1}{K}
\end{aligned}
$$

So then, by definition of universal hash function:

$$
\begin{aligned}
\operatorname{cp}(H(X), H) & \leq \frac{1}{N}\left(\frac{1}{K}+\frac{1}{M}\right) \\
& =\frac{1}{M N}\left(1+\frac{M}{K}\right)
\end{aligned}
$$

Finally, by Lemma 12.1, then:

$$
\begin{aligned}
\left|(H(x), H)-\left(U_{m}, H\right)\right| & \leq \sqrt{M / K} \\
& =2^{\frac{m-k}{2}}
\end{aligned}
$$

Solving for m :

$$
m=k-2 \log \left(\frac{1}{\epsilon}\right)
$$

Lemma 12.3 Denote Ext: $\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$, where $\operatorname{Ext}(x, h)=h(x)$, and $d=n$. Then Ext is a (k, ϵ)-strong seeded extractor for all k, m s.t. $m=k-2 \log \left(\frac{1}{\epsilon}\right)$.

This extractor isn't the best we can do. The seed length is too long (since $d=n$). Recall that we showed an extractor with seed length $d=\log (n-k)+2 \log \left(\frac{1}{\epsilon}\right)+O(1)$ exists using the probabilistic method (in the previous lecture), and this universal hash extractor construction does not get very close.

12.3 Extractors from Expanders

Lemma 12.4 For all $n, k \in \mathbb{N}$, \exists explicit (k, ϵ)-seeded extractor Ext : $\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$ bits, where $m=n$, with (very large) seed length $d=O\left(n-k+\log \left(\frac{1}{\epsilon}\right)\right)$.

Proof: Let G be a (N, D, γ)-spectral expander. Turn G into a bipartite graph G^{\prime} (in a natural way) s.t. both halves have N vertices, and edges originally in G now span the two halves. Clearly G^{\prime} is D-left regular.

From G^{\prime} we construct an extractor $\operatorname{Ext}(x, i)=i$ th neighbor of vertex x in G^{\prime}. (Intuitively, the input chooses a vertex and the seed chooses a random neighbor.) Then, we want to prove that $\operatorname{Ext}\left(X, U_{d}\right)$ and U_{n} 's statistical distance is small (interpreting T intuitively as any subset of the right vertices):

$$
\begin{aligned}
\left|\operatorname{Ext}\left(X, U_{d}\right)-U_{n}\right| & \leq \epsilon \\
\forall T \subseteq[N],\left|\operatorname{Pr}\left[\operatorname{Ext}\left(X, U_{d}\right) \in T\right]-\frac{|T|}{N}\right| & \leq \epsilon
\end{aligned}
$$

Then, note that

$$
\operatorname{Pr}\left[\operatorname{Ext}\left(X, U_{d}\right) \in T\right]=\frac{e(S, T)}{K \cdot D}
$$

Plugging it in, and rearranging, where $|S|=K:$:

$$
\begin{aligned}
\left|\frac{e(S, T)}{K \cdot D}-\frac{|T|}{N}\right| & \leq \epsilon \\
\left|\frac{e(S, T)}{D N}-\frac{K|T|}{N^{2}}\right| & \leq \frac{\epsilon K}{N}
\end{aligned}
$$

Recall the statement of the expander mixing lemma,

$$
\left|\frac{e(S, T)}{N \cdot D}-\frac{|T|}{N} \cdot \frac{|S|}{N}\right| \leq \lambda \frac{\sqrt{|S||T|}}{N}
$$

To get the proper ϵ, then we can we solve:

$$
\begin{aligned}
\lambda \frac{\sqrt{K N}}{N} & \leq \epsilon \frac{K}{N} \\
\lambda & \leq \epsilon \sqrt{\frac{K}{N}}
\end{aligned}
$$

So we want λ of the form $\epsilon \cdot 2^{\frac{k-n}{2}}$. Recall that $\lambda \geq c \cdot \frac{1}{\sqrt{D}}$, if we start with a good enough spectral expander. Then $D=c \cdot \frac{1}{\lambda_{2}}=O\left(\frac{1}{\epsilon^{2}} 2^{n-k}\right)$ so we have seed length:

$$
d=O(n-k+\log (1 / \epsilon))
$$

A brief note on the efficiency of this extractor. We want it to run in poly (n) time. So we need spectral expanders that are strongly explicit, so that given a vertex we can find its neighbors in efficiently.

12.4 One More Construction From Expanders

Lemma 12.5 For all $\alpha>0$, there exists $\beta>0$ s.t. $\forall n, k \in \mathbb{N}$, there exists a (k, ϵ)-seeded extractor Ext : $\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$, where $k \geq(1-\beta) n$, $\epsilon=O(1), D=2^{d}=\alpha n$ (so $d=c \log (n)$ bits), for $m=(1-\alpha) n$.

Proof: Let G be a 2^{c}-regular on M nodes, where c is. constant and $\lambda=\lambda(G)<1$.
Let X an (n, k)-source. Use the first m bits of the source to select a vertex x on an expander. Divide the last $n-m$ bits into multiple sections, each of length c bits, s.t. $n=m+c \cdot D$.

The construction is then to start at vertex x, and then do a D-length random walk (where each step in the walk selected by a group of c bits); each neighbor we traverse during the walk we add to the right set of a bipartite graph G^{\prime}, and then we can use the seed to choose one of these D neighbors and extract one as the output.

Choose any $T \subseteq[M]$. Let $\widetilde{\mu}$ denote the fraction of neighbors of vertex x that are also in T when we use bits drawn from U_{n} to do the random walk (instead of X). Then, assuming n is large enough,

$$
\begin{aligned}
\widetilde{\mu} & =\operatorname{Pr}\left[\left|\widetilde{\mu}-\mu_{T}\right|>\epsilon\right] \\
& \leq 2 \cdot \exp \left(\frac{-(1-\lambda) \epsilon^{2} D}{4}\right) \quad \text { (by Expander Chernoff Bound) } \\
& =2^{-c^{\prime} n}
\end{aligned}
$$

(If n is too small, we can brute force an expander.)
Define $\operatorname{Bad}_{T} \subseteq\{0,1\}^{m}, \operatorname{Bad}_{T}=\left\{\left.x \in\{0,1\}^{n}| | \frac{|N(x) \cup T|}{D}-\frac{|T|}{M} \right\rvert\,>\epsilon\right\}$. There are very few bad Ts:

$$
\begin{gathered}
\frac{\left|B a d_{T}\right|}{2^{n}}<2^{-c^{\prime} n} \\
\operatorname{Pr}\left[x \in B a d_{T}\right]
\end{gathered} \leq \frac{\left|B a d_{T}\right|}{2^{n}} \leq 2^{-c n} / 2^{-\beta m}
$$

So we choose $\beta<c$.

