11.1 Overview

This lecture will cover the following topics:

- Probabilistic existence of seeded extractors
- Simulation of randomized algorithms using defective sources
- Universal hash functions (with explicit construction)
- Construct seeded extractors from hash functions

11.2 Existence of seeded extractors

Recall that we defined a seeded extractor to be a set of functions

$$
\left\{\operatorname{Ext}_{i}:\{0,1\}^{n} \rightarrow\{0,1\}^{m}\right\}_{i \in\{0,1\}^{d}}
$$

such that $\left|\operatorname{Ext}_{U_{d}}(X)-U_{m}\right|<\varepsilon$ for any (n, k)-source X.
Alternatively, we can view an extractor as a single function.
Definition 11.1 We say that

$$
\text { Ext : }\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}
$$

is a (k, ε)-extractor if $\left|\operatorname{Ext}\left(X, U_{d}\right)-U_{m}\right|<\varepsilon$ for any (n, k)-source X.
Sometimes, we will need an even stronger notion.

Definition 11.2 We say that

$$
\text { Ext : }\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}
$$

is a strong-seeded extractor if $\left|\operatorname{Ext}\left(X, U_{d}\right), U_{d}-U_{m}, U_{d}\right|<\varepsilon$.
This is equivalent to requiring that

$$
\underset{y \sim U_{d}}{\mathbb{E}}\left|\operatorname{Ext}(X, y)-U_{m}\right|<\varepsilon .
$$

In what follows, we will use the notation $D_{1} \approx_{\varepsilon} D_{2}$ to mean that $\left|D_{1}-D_{2}\right|<\varepsilon$. Next, we show the existence of seeded extractors.

Proof:

Let Ext : $\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$ be a random function, and let X be a flat (n, k)-source. Take $T \subseteq\{0,1\}^{m}$ to be a "test" subset for our extractor. The main idea of what follows is to take a union bound over all tests and flat sources. Note that all uppercase letters represent the base 2 exponential of their lowercase counterparts.

For any $x \in\{0,1\}^{n}$ and $y \in\{0,1\}^{d}$, let

$$
Z_{x, y}= \begin{cases}1, & \text { if } \operatorname{Ext}(x, y) \in T \\ 0, & \text { o.w. }\end{cases}
$$

Next, define

$$
W_{T}=\operatorname{Pr}_{x \sim X, y \sim U_{d}}[\operatorname{Ext}(x, y) \in T]=\frac{1}{K D} \sum_{x \in \operatorname{supp}(X), y \in\{0,1\}^{d}} Z_{x, y}
$$

Clearly, $\mathbb{E}\left[W_{T}\right]=|T| / M$. Noting that the $Z_{x, y}$ variables are i.i.d. and uniform, we can use Chernoff's bound to find

$$
\operatorname{Pr}\left[\left|W_{T}-\mathbb{E}\left(W_{T}\right)\right|>\varepsilon\right] \leq \exp \left(-\Omega\left(\varepsilon^{2} K D\right)\right)
$$

Thus, we can bound the probability of Ext performing poorly on any test set or flat source by

$$
2^{M}\binom{N}{K} \exp \left(-\Omega\left(\varepsilon^{2} K D\right)\right)
$$

We choose $m=k+d-2 \log (1 / \varepsilon)-O(1)$ and bound $\binom{N}{K}$ by $(N e / K)^{K}$ to see that

$$
d \geq \log (n-k)+2 \log (1 / \varepsilon)+O(1)
$$

suffices to bring the error probability below 1 and guarantee the existence we desire.

11.3 Simulation of randomized algorithms

Suppose \mathcal{A} is a randomized algorithm such that $\mathcal{A}\left(\cdot, U_{m}\right)$ is incorrect with probability at most ε, and suppose we have access to an (n, k)-source X with $k>m$.

If Ext is a (k, δ)-extractor, we can define a new algorithm

$$
\mathcal{A}^{\prime}(\cdot, X)=\operatorname{maj}_{y \in\{0,1\}^{d}}\{\mathcal{A}(\cdot, \operatorname{Ext}(X, y))\}
$$

Clearly, the time blow up is a factor of D.

Claim 11.3 \mathcal{A}^{\prime} has error at most $2(\varepsilon+\delta)$.

Proof: We now introduce a graph interpretation of the seeded extractor Ext : $\{0,1\}^{m} \times\{0,1\}^{n} \rightarrow\{0,1\}^{m}$,

where the above represents a D left-regular bipartite graph with x and z joined if and only if there exists $y \in\{0,1\}^{d}$ such that $\operatorname{Ext}(x, y)=z$.

Define the set $\operatorname{Bad}=\left\{z \in\{0,1\}^{m}: \mathcal{A}(\cdot, z)\right.$ is wrong $\}$. Clearly, $|\mathrm{Bad}| \leq \varepsilon M$. Next, define

$$
\operatorname{Bad}_{X}=\{x \in \operatorname{supp}(X):|\Gamma(x) \cap \operatorname{Bad}|>D / 2\}
$$

so that $\mathcal{A}^{\prime}(\cdot, x)$ is wrong if and only if $x \in \operatorname{Bad}_{X}$. Then, because Ext is an extractor, we have that $|\mathrm{Bad}| / M \leq \varepsilon$, and if $x \in \operatorname{Bad}_{X}$, then

$$
\operatorname{Pr}\left[\operatorname{Ext}\left(x, U_{d}\right) \in \mathrm{Bad}\right]>\frac{1}{2}
$$

Putting everything together, we have

$$
\operatorname{Pr}_{x \sim X}\left[x \in \operatorname{Bad}_{X}\right] \leq 2 \operatorname{Pr}\left[\operatorname{Ext}\left(X, U_{d}\right) \in \operatorname{Bad}\right] \leq 2\left(\frac{|\mathrm{Bad}|}{M}+\delta\right) \leq 2(\varepsilon+\delta)
$$

Thus, the error of \mathcal{A}^{\prime} is bounded by $2(\varepsilon+\delta)$, as desired.

11.4 Universal hash functions

Definition 11.4 We say that $\mathcal{H}=\left\{h_{i}\right\}_{i \in I}, h_{i}:[N] \rightarrow[M]$, is a universal hash function if for all $x \neq y \in[N]$

$$
\operatorname{Pr}_{h \in H}[h(x)=h(y)] \leq \frac{1}{M} .
$$

Let \mathbb{F}_{q} be a finite field with $q=2^{n}$, and define

$$
h_{a}: x \mapsto a \cdot x \quad\left(\bmod 2^{m}\right)
$$

for each $a \in \mathbb{F}_{q}$.
Claim 11.5 $\mathcal{H}=\left\{h_{a}\right\}_{a \in \mathbb{F}_{q}}$ is a universal hash function.
Proof: Take x, y distinct in \mathbb{F}_{q}. Then,

$$
\operatorname{Pr}_{h \in H}[h(x)=h(y)]=\operatorname{Pr}_{a \in \mathbb{F}_{q}}\left[a x=a y \quad\left(\bmod 2^{m}\right)\right]=\operatorname{Pr}_{a \in \mathbb{F}_{q}}\left[a z=0 \quad\left(\bmod 2^{m}\right)\right]=1 / M
$$

where $z=x-y \neq 0$.

11.5 Constructing extractors from hash functions

Definition 11.6 We define the collision probability

$$
\operatorname{cp}(D)=\operatorname{Pr}\left[D=D^{\prime}\right]
$$

where D and D^{\prime} are independent copies of D.

Observe that

$$
\operatorname{cp}(D)=\sum_{x \in \Omega} D(x)^{2}
$$

Lemma 11.7 If D is a distribution on $\{0,1\}^{n}$ with $\operatorname{cp}(D) \leq \frac{1+\varepsilon}{N}$, then

$$
\left|D-U_{n}\right| \leq \sqrt{\varepsilon}
$$

Proof: We have

$$
2\left|D-U_{n}\right|=\left\|D-U_{n}\right\|_{1} \leq \sqrt{N}\left\|D-U_{n}\right\|_{2}
$$

by Cauchy-Schwartz, and

$$
\left\|D-U_{n}\right\|_{2}^{2}=\sum_{x \in\{0,1\}^{n}}(D(x)-U(x))^{2}=\sum_{x \in\{0,1\}^{n}} D(x)^{2}-2 \sum_{x \in\{0,1\}^{n}} D(x) \frac{1}{N}+\frac{1}{N^{2}} N=c p(D)-\frac{1}{N}
$$

from which the desired inequality follows.
(to be continued in next lecture)

