
CS 6815 Pseudorandomness and Combinatorial Constructions Fall 2019

Lecture 1: August 29
Lecturer: Eshan Chattopadhyay Scribe: Benjamin Y Chan

1.1 Introduction: Polynomial Identity Testing

We motivate randomized algorithms with an example problem.

Definition 1.1 (Polynomial Identity Testing) Fix a finite field F. Let Pn,d be all polynomials over F
which are n-variate, degree ≤ d. The Polynomial Identity Testing problem (PIT) is the following:

Given f, g ∈ Pn,d, is f ≡ g?

1.1.1 Equivalence of Polynomials

What is equivalence? It’s not a measure of whether two polynomials f and g evaluate the same function.
(For example, over F = F2, x and x2 evaluate to the same function; but x 6≡ x2.)

1.1.2 Representation of Polynomials

This section explores how to represent polynomials and compute their equivalence.

1.1.2.1 As Coefficients

• a vector of coefficients

• at most
(
n+d
≤d
)

=
d∑

i=0

(
n+d
i

)
= number of coefficients of n-variate degree ≤ d polynomial

Algorithm Sketch 1.2 (Equivalence of Coefficients) If f and g are given as vectors of coefficients,
equivalence reduces to vector comparison which is easy to compute. Iterate over the list of coefficients and
check equality.

1.1.2.2 As Sum of Products

Of course, there are more efficient representations. Consider the following:

• f ∈ Pn,d is given as a sum of products of linear terms; e.g. f = (x1 + x6 + x7)(x2 + x1 + x100) + (x2 +
x7 + x11)(x2 + x3 + x11 + x23) +

• we can always compute and expand this expression to a vector of coefficients
• Problem: initial representation could be small, but the corresponding vector of coefficients might be

very long and expensive to compute

Algorithm Sketch 1.3 Compute vector of coefficients, and then run ‘simple algorithm’ above.

1-1

1-2 Lecture 1: August 29

1.1.2.3 As Arithmetic Circuits: General Representation of Polynomials

Definition 1.4 An arithmetic circuit C is a directed acyclic graph, with

• n nodes with 0 in-degree called leaves,
• one node with 0 out-degree ’root-node’
• leaves are labeled with variables (x1, ..., xn) or field elements
• All other nodes are labelled with + (plus) or × (product)

×

+ −

x1 1 x2 x3

Figure 1.1: Example of an arithmetic circuit

1.1.3 Algorithms for PIT

Claim 1.5 (Deterministic Algorithm for PIT) We have a deterministic algorithm for PIT that takes
nO(d) time.

For large d, the above is an exponential time algorithm. It is a challenging open question to design a
deterministic algorithm for PIT that runs in time poly(n, d).

Algorithm Sketch 1.6 (Randomized Algorithm for PIT) :

1. pick random x ∈ Fn

2. If f(x) = g(x), output ‘yes’
3. Else output ‘no’

Let q = |F|. Assume q is large (i.e. q = poly(n, d)).

Claim 1.7 (Correctness) If f 6≡ g, Pr
x∈Fn

[f(x) = g(x)] ≤ d
q .

The claim above follows directly from the following lemma, which proves that low degree polynomials have
few roots.

Lemma 1.8 (DeMillo-Lipton-Schwartz-Zippel Lemma) Let f ∈ Pn,d (over finite field F), f 6≡ 0.
Then Pr

x∈Fn
[f(x) = 0] ≤ d

q .

Proof: We prove by Induction on n. Case n = 1: follows from the fact that a univariate polynomial of
degree ≤ d has at most d roots in F.

Lecture 1: August 29 1-3

Case n > 1: We can write f as f(x1, ..., xn) =
d∑

i=0

(xi · fi(x2, ..., xn)). Let i be the maximum number s.t. fi

is not the 0 polynomial, which is well defined since f is not identically zero. Thus, degree fi ≤ d− i.

Choose (x2, ..., xn) randomly. By induction hypothesis, Pr
(x2,...,xn)∼Fn−1

[fi(x2, ..., xn) = 0] ≤ (d−i)
q .

Next, consider the case that fi(x2, ..., xn) 6= 0. Then f is a univariate polynomial of x1 of degree i ≤ d
(conditioned on fi 6= 0). Then Pr

x1

[f(x1, ..., xn) = 0] ≤ i
q , using the base case.

This implies that:

Pr
x∼Fn

[f(x) = 0] ≤ i

q
+

(d− i)
q

=
d

q

1.2 Complexity Classes

Fix a language L. L is in each of the following complexity classes if ∃ a poly-time algorithm A s.t.

Complexity Classes
Event RP coRP BPP NP
x ∈ L Pr

y
[A(x, y) = 1] ≥ 1

2 Pr
y

[A(x, y) = 1] = 1 Pr
y

[A(x, y) = 1] ≥ 2
3 Pr

y
[A(x, y) = 1] > 0

x 6∈ L Pr
y

[A(x, y) = 1] = 0 Pr
y

[A(x, y) = 1] ≤ 1
2 Pr

y
[A(x, y) = 0] ≥ 2

3 Pr
y

[A(x, y) = 1] = 0

From this table, we immediately see that RP ⊆ NP , and coRP ⊆ coNP . The relationship between BPP
and NP is unknown. It is in fact well believed that P = BPP .

1.3 Amplification: Error Reduction for Randomized Algorithms

First, we start with some tools that we need later to prove that we can reduce error in the general case.

1.3.1 Concentration Inequalities for Random Variables

1. Markov’s Inequality (First moment method) Let X be a non-negative random variable over the
non-negative real numbers. Then for any t > 0,

Pr[X ≥ t] ≤ E[X]

t

Proof Sketch: E[X] =
∑
i · Pr[x = i] ≥ t · Pr[x ≥ t].

2. Chebyshev’s Inequality (Second moment method)

Pr[|X − E[X]| ≥ t] ≤ Var(X)

t2
for any t > 0

Recall that the variance is Var(X) = E[(X − E[X])2] = E[X2]− E[X]2.
Proof: Let µ = E[X]. Apply Markov’s Inequality: Pr[(X − µ)2 ≥ t2] ≤ E[(x− µ)2]/t2

3. Chernoff Bounds

1-4 Lecture 1: August 29

Let X1, ..., Xn be i.i.d binary random variables. Let X =
n∑

i=1

Xi. Let µ = E[X]. Let µi = E[Xi]. Then

the following inequality holds:

Pr[|X − µ| ≥ δµ] ≤ 2 · exp(−µ · δ
2

3
) where 0 < δ < 1

Proof: To be proved in lecture 2.

1.3.2 Error Reduction

Recall L ∈ BPP,∃ poly time algorithm A for L s.t. if x ∈ L, Pr
y

[A(x, y) = 1] ≥ 2
3 , and if x 6∈ L,

Pr
y

[A(x, y) = 0] ≥ 2
3 . How do we reduce this error so that we can construct a randomized algorithm that will

succeed with high probability?

Idea: Sample independent sources of randomness y1, y2, ...yn (n will be fixed later). Then runA(x, y1), A(x, y2), ...A(x, yn).
Output the majority vote.

Suppose x ∈ L, define Zi = output of A(x, yi); Z =
∑

i Zi. Then Pr[Zi = 1] ≥ 2
3 ; thus E[Xi] ≥ 2

3 and
E[Z] ≥ 2

3n.

The probability of error is then Pr[Z ≤ n
2] ≤ Pr[|Z − E[Z]| ≥ n

10]. Applying the Chernoff bound this is

≤ 2−Ω(n) < ε (if we pick n = O(log(1/ε))).

If the initial algorithm A uses r bits, we now use r ·O(log(1/ε)) bits.

	Introduction: Polynomial Identity Testing
	Equivalence of Polynomials
	Representation of Polynomials
	As Coefficients
	As Sum of Products
	As Arithmetic Circuits: General Representation of Polynomials

	Algorithms for PIT

	Complexity Classes
	Amplification: Error Reduction for Randomized Algorithms
	Concentration Inequalities for Random Variables
	Error Reduction

