
CS 6810: Theory of Computing Fall 2021

Lecture 5: Sep 9, 2021

Lecturer: Eshan Chattopadhyay Scribe: Conan Gillis

1 Oracle Turing Machines and Relativisation (Or, the Limits of
Diagonalization)

Definition An oracle is a language O ⊆ {0, 1}∗, and a query is a string x ∈ {0, 1}∗.

Definition Given an oracle O, an Oracle Turing Machine M0 is a multitape Turing Machine
with the following:

1. An oracle tape.

2. Three additional states, qquery, qno, qyes.

The machine is able to write a string (say, x) on the oracle tape, then transition into qquery. If
x ∈ O, the very next step the machine will transition to qyes. If x 6∈ O, the machine will transition
into qno. The machine is allowed to rewrite the tape, then transition to qquery again and repeat the
process, thus making multiple queries in a single execution. In any time/space analysis, we do not
charge for the space needed to write on the tape, and the transition from qquery to qno or qyes only
takes one computational step. In other words, all activities of the ”oracle,” including storing and
reading the input, occur for free, at least with respect to the TM’s time/space complexity. We do,
however, charge for the time to actually write to the oracle tape.

Note: M itself need not be deterministic.

Definition Let O be an oracle. We define

PO = {L ⊆ {0, 1}∗ : ∃ TM M such that MO runs in polynomial time to compute L}

and

NPO = {L ⊆ {0, 1}∗ : ∃ NDTM M such that MO runs in polynomial time to compute L}.

Observation If an oracle O ∈ P, then PO = P.

Proof: If L ∈ P, there exists an oracle TM MO that calculates L in polynomial time. But,
since O ∈ P, a Turing Machine can simply calculate x ∈ O in polynomial time, without reference
to an oracle. The oracle Turing Machine MO will make only polynomially many oracle queries
(since each query still costs one unit of computation time, and MO needs to compute L in polyno-
mial time), so replacing these queries with a polynomial-time computation will still give rise to a
polynomial time for the overall execution, so L ∈ P. Thus, PO ⊆ P. The reverse inclusion is clear,
since we can create an oracle machine for a language in P that simply never checks its oracle, and
operates identically to the deterministic machine that already computes L in polynomial time (this
exists by the definition of P). Therefore, PO = P.

1

Lecture 5: Sep 9, 2021 2

Question If O = SAT = {φ : φ is not satisfiable}, then is SAT ∈ P SAT?

Answer Yes. We can make an oracle machine MSAT that takes in a string, writes in on its
oracle tape, and runs a query, returning the opposite of whatever the query returns. If the query
returns no (i.e. qquery transitions to qno), the input is not in SAT, so it must be in SAT. If the

query returns yes, the input is in SAT, and hence not in SAT. Thus MSAT will correctly compute
SAT, and the only time it needs is the time to write on the oracle tape, which is linear, and we
are done.

[Baker, Gill, Solovay] There exist oracles A,B such that PA = NPA but PB 6= NPB.

Moral: A proof “relativizes” if a) you (the prover) enumerate over Turing Machines, and b) use
a Universal Turing Machine to simulate other Turing Machines.

Observation Any diagonalization proof relativizes.

Example Given a time function t, suppose we want to show

DTIME O(t(n)) (DTIME O(t(n)2)

for any oracle O. We would simply go through the proof of

DTIME (t(n)) (DTIME (t(n)2)

without the oracles, writing ∗O wherever needed.

More formally, if a proof that relativizes shows for complexity classes C1, C2 that C1 6= C2, in
fact it implies CO

1 6= CO
2 for any oracle O. This, combined with the above theorem, shows that

diagonalization alone will not be enough to solve P vs. NP.

We now begin the proof of the Theorem.

Proof. Let A = {〈 bMc, x, 1n〉 : M accepts x in at most 2n steps }, and recall that

EXP =
⋃
c≥1

DTIME (2o(n
c)).

We claim that PA = NPA = EXP . First, observe that the inclusion PA ⊆ NPA follows
immediately from the definitions of PA and NPA. We next need to show NPA ⊆ EXP and
EXP ⊆ PA. By the transitivity of the ⊆ relation, this will prove our claim.

We show the former inclusion first. Let L ∈ NPA. Then there exists an NDTM N such that
NA computes L in polynonial time. At each step of the execution of NA, there are two possible
transitions, and some of these steps are oracle queries. Thus, there are 2poly(n) possible sequences of
executions the machine can make. (The poly(n) exponent comes from the fact that NA terminates
in poly(n) steps.) In each sequence, every step might be an oracle call, so there are poly(n) oracle
calls made for each sequence. By the definition of A, for any string s we can decide if s ∈ A in
≤ 2|s| time. For, if s = 〈 bMc, x, 1n〉, we simply simulate M(x) for 2n steps and check if M has
accepted it or not, and we can reject s in polynomial time if it is not of this form.

Thus, we may construct a Turing Machine to brute-force simulate each transition sequence of
NA, and simulate the oracle calls deterministically. With 2poly(n) sequences, with poly(n) possible

Lecture 5: Sep 9, 2021 3

oracle calls taking 2poly(n) time each, this will take a total of O(2poly(n)(poly(n) ·2poly(n)) time. This
will be exponential, hence L ∈ EXP .

All that remains is to show EXP ⊆ PA. If L ∈ EXP , then by definition there exists a Turing
Machine ML that computes L in 2O(nc) time. To show L ∈ PA, we construct a machine NA as
follows. We hardcode c and the description bMLc of ML in NA, so that it can be reproduced
automatically by the machine whenever needed. Given an input x, NA writes 〈 bMLc, x, 1|x|

c〉 on
its oracle tape, and transitions to qquery. Note that this takes poly(|x|) time, since the description
of ML is hardcoded and thus only costs constant time to write. If, on the next step, the machine
transitions to qno, then ML does not accept x in exponential time. Since ML by assumption accepts
every element of L in exponential time, this means x 6∈ L, so we make NA also reject x. If the
machine transitions to qyes, then ML does except L, hence x ∈ L, so we make NA accept x. Thus,
we see that NA computes L in polynomial time, hence L ∈ PA. This completes the proof that
PA = NPA.

To complete our proof of this theorem, we must produce an oracle B such that PB 6= NPB.
For any language L ⊆ {0, 1}∗, let the “unary language” UL = {1n : {0, 1}n∩B 6= ∅}. We claim that
UL ∈ NPL for any L. For, given an input 1n an NDTM with access to L as an oracle can “guess”
(using non-determinism) some x ∈ {0, 1}n and check that x ∈ L using the oracle. With this fact in
hand, we can construct B in an iterative process.

Stage 0 Set B = ∅

Stage i Let us be given some enumeration MB
1 ,M

B
2 , ... of Turing Machines with access to B as

an oracle (or, at least, that part of B which has already been constructed). Up to this point, y ∈ B
or y 6∈ B has been decided for only finitely many y ∈ {0, 1}∗. So, we may let n be the smallest
integer such that no element of {0, 1}n has been decided. Recalling that we are at stage i, run the
machine MB

i on 1n for at most 2n/10 steps.
If MB

i makes an oracle query (i.e. asks y ∈ B? for some y), then we can decide now whether y
is in B as follows: if y’s fate has already been decided at some previous stage then we agree with
the previous decision, otherwise we declare answer y 6∈ B. If MB

i outputs 1 on 1n, then B contains
a string of length n, so declare all remaining strings z ∈ {0, 1}n to not be in B. Otherwise, declare
some arbitrary z ∈ {0, 1}n to be in B, and all others to not be (z exists because MB

i has taken
2n/10 steps, so at most 2n/10 < 2n = |{0, 1}n| strings have been considered). Continue on to the
next step.

	Oracle Turing Machines and Relativisation (Or, the Limits of Diagonalization)

