
CS 6810: Theory of Computing Fall 2021

Lecture 4: Sep 7, 2021

Lecturer: Eshan Chattopadhyay Scribe: Adarsh Srinivasan

1 Introduction

In this lecture, we prove Ladner’s theorem using the technique of diagonalisation. Previously, we
had defined the complexity classes P and NP. The class P is a subset of NP. It is widely believed,
but not been proved that P 6= NP. We have also defined the class of NP-complete problems
which are at least as hard as any other problem in NP. Ladner’s theorem proves the existance of
NP-intermediate problems. That is, assuming that P 6= NP, there exist problems that are not
NP-complete but also not in P.

2 Ladner’s theorem

Theorem 2.1 (Ladner’s theorem). Assuming that P 6= NP, there exists a language L ∈ NP \P
that is not NP-complete.

We prove this theorem by explicitly constructing a language that is not NP-complete but not
in P, assuming P 6= NP.

Recall the language SAT, consisting of all satisfiable boolean formula. Consider a time-constructable
function H(n). We define the language SATH, consisting of all satisfiable boolean formula ‘padded’
by nH(n) 1’s.

Definition 2.2.
SATH =

{
ψ01n

H(n)
: ψ ∈ SAT, n = |ψ|

}
Observe that when H grows fast enough, SATH ∈ P. For example, if H(n) = n, the input

size is (2n). Hence, we can check whether an input is in SATH by simply evaluating the boolean
expression on all possible combinations of truth values of the literals, which would take at most 2n

time which is polynomial in input size.

On the other hand, consider the case when H(n) is bounded above by some constant c for every
n. In that case, SATH is NP-complete. In our proof of the theorem, we choose a function H that
lies in between these two extremes. It tends to infinity with n, so that SATH is not NP-complete
but it also grows slowly enough to ensure that SATH /∈ P . We define the function H recursively as
follows. We assume the existence of a natural labelling scheme from the integers to the set of all
descriptions of Turing machines using the universal Turing machine described earlier, and denote
by Mi the TM labelled by the integer i.

Definition 2.3. H(n) is the smallest natural number i ≤ log logn such that for every x ∈ {0, 1}∗,
with |x| ≤ log n, the Turing machine Mi with input x halts within i|x|i steps and outputs 1 if and
only if x ∈ SATH. If no such Turing machine exists, H(n) is defined to be log logn.

1

Lecture 4: Sep 7, 2021 2

As the definition of H depends on H itself, we need to check that it is not cyclic. The definition
of H(n) only involves checking the output of Turing machines on strings of length at most length
log n, and hence the value of H on n only depends on values of H on integers less than log n.
Remember that the goal is to show that SATH /∈ P. We now show that this is equivalent to
showing that H(n) is bounded.

Lemma 2.4. SATH ∈ P if and only if H(n) < c for all natural numbers n, where c is an absolute
constant

Proof. If SATH ∈ P, then there exists a Turing machine M which solves SATH in at most cnc

steps for some constant c. Now, as there are infinite representations for every Turing machine,
there exists a natural number k > c such that M = Mk. This machine Mk halts within knk steps.
Hence, by the definition of H(n), if n ≥ 22

k
, H(n) ≤ k.

We now prove the converse. As H(n) is upper bounded by a constant c, this means that there
exists 1 ≤ i ≤ c such that H(n) = i for infinitely many i. We claim that the Turing machine Mi

solves SATH in a polynomial number of steps.

To prove that, we assume that there exists x ∈ {0, 1}∗ on which Mi does not halt after i|x|i
steps. Consider any n > 2|x|. If H(n) = i, this means that Mi must halt on input x in i|x|i steps.
Hence, this implies that for all n ≥ 2|x|, H(n) 6= i which is a contradiction to the fact that H(n) = i
infinitely often.

A natural corollary of this theorem is that if SATH is not in P, then it must be an unbounded
function.

Corollary 2.5. If SATH /∈ P, this means that limn→∞H(n) =∞

We now have all the necessary tools to prove Ladner’s theorem. It is clear that SATH ∈ NP.
The certificate would simply consist of a satisfying assignment to the formula, and the verifier can
evaluate the formula on the given assignment and then verify if the padding consists of the correct
amount of 1’s in time polynomial in input size.

We now show that SATH /∈ P. By Lemma 2.4, SATH ∈ P implies that H(n) ≤ c for all n.
This means that any x ∈ SATH consists of a satisfiable formula ψ followed by at most |ψ|c 1’s.
We can reduce a SAT instance to an instance of SATH by simply padding H(n) 1’s, and because
H(n) ≤ c, the blowup of the input size is at most polynomial. As SAT ≤P SATH, this implies that
there exists a Turing machine that solves SAT in polynomial time, which is a contradiction to our
assumption that P 6= NP.

We now show that SATH is not NP-complete. If SATH is NP-complete, then there must exist
a polynomial time reduction from SAT to SATH. that maps a boolean formula ψ of size n to
a SATH instance of size nc for a constant c. This instance must be of the form φ01|φ|

H(|φ|)
and

nc = |φ| + |φ|H(|φ|). As SATH /∈ P, limn→∞H(n) = ∞ by Corollary 2.5. Hence, the padding is
superpolynomial in size of φ. This implies that limn→∞ |φ|/n = 0, as otherwise, the right hand side
of this equation would grow much faster than the left hand side. Hence, we have in effect reduced
the problem of solving the SAT instance ψ to solving the SAT instance |φ| where |φ||ψ| = o(|ψ|).
Hence, by applying this reduction at most polynomially many times, we can obtain a SAT instance
of constant size, which can be solved in constant time. Hence, this implies that SAT ∈ P which is
a contradiction.

	Introduction
	Ladner's theorem

