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1 Introduction

In this lecture, we further discuss the complexity classes AM and MA. Unlike the class IP , these
protocols use public coins. In the class MA, Merlin sends Arthur a proof, that Arthur then verifies
using a randomised verifier using public coins. In the class AM on the other hand, Arthur first
sends Merlin a set of random coin tosses. Merlin can then decide on a proof that depends on the
coin tosses, and Arthur then verifies this proof using the coin tosses previously generated. In this
lecture, we prove that both these classes have the property of perfect completeness, and along the
way prove that MA is contained in AM. We also discuss the relation of AM and PH.

2 Obtaining Perfect completeness

Theorem 2.1 (Perfect completenss of MA). For any language L ∈ MA, then there exists a
probabilistic polynomial time verifier V such that

x ∈ L =⇒ there exists m such that Prr[V (x, r,m) = 1] = 1

x /∈ L =⇒ for all m,Prr[V (x, r,m) = 1] ≤ 1/3

Proof. By using an error reduction technique (similar to the one used for BPP ), we can say that
there exists a verifier V such that

x ∈ L =⇒ there exists m such that Prr[V (x, r,m) = 1] ≥ 1− 2−n

x /∈ L =⇒ for all m,Prr[V (x, r,m) = 1] ≤ 2−n

Now a similar argument to the one we used to prove BPP ⊆ PH completes the proof. For a given
x, we define the set 1x as follows:

1x = {r : ∃m,V (x, r,m) = 1}

If the probability of success is large (x ∈ L), then 1x is large. Hence, if x ∈ L, for k = poly(n),
there exist vectors v1, . . . , vk such that for all r, there exists i such that vi ⊕ r ∈ 1x. On the other
hand, if x /∈ L, the probability that there exists i such that r ⊕ vi ∈ 1x is tiny. The proof of this
is the same as the proof given in lecture 14. Having proved this fact, the protocol can be easily
defined:

Merlin sends Arthur a string m and strings v1, . . . , vk. Arthur accepts if V (x, r⊕ vi,m) = 1 for
at least one vi. If x ∈ L, Merlin, being all powerful can compute the strings vi as they exist. If
x /∈ L however, for every message m, the chance that at lest one of the strings r ⊕ vi ∈ 1x is very
small, at most k2n. Notice that this is the probability of the new verifier V ′ accepting. Hence, we
have proved the perfect completeness of MA

We now show that the complexity class MA is a subset of the class AM :
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Theorem 2.2.
MA ⊆ AM

Proof. Given a language L ∈MA, we define an AM protocol to compute it. We first perform error
reduction to get an MA protocol with the verifier succeeding with probabilities at least 1− 1/2b+2

if x ∈ L and with probability at most 1/2b+2 if x /∈ L where b = |m|, the length of the message.
This MA protocol uses a verifier Ṽ (x,m, r̃), where r̃ is a concatenation of b random strings. Now
we define the following protocol:

Arthur first sends Merlin the random string . Merlin then responds with the message m. Note
that in the MA protocol, this string does not depend on r̃ at all. Hence, if x ∈ L, an honest prover
can just respond with the same string m that he would have sent in the MA protocol. If x /∈ L
however, the probability of the verifier accepting is:

Prr[∃m such that Ṽ (x,m, r̃) = 1] ≤ 2b max
m

Prr[Ṽ (x,m, r̃) = 1]

This follows from the union bound on m. Notice that we have chosen Ṽ such that Prr[Ṽ (x,m, r̃) =
1] ≤ 1/2b+2. hence, the probability of success it at most 1/4, showing that this protocol is indeed
an AM protocol.

An interesting consequence of this theorem is that AM [k] = AM [2] for any constant k. For
example, if k = 4: AMAM = AAMM = AM . However k has to be a constant. If k is not a
constant, the amount of communication becomes exponentially large.

We now show the perfect completeness of the class AM .

Theorem 2.3 (Perfect completeness of AM). In the AM protocol,

x ∈ L =⇒ there exists m(·) such that Prr[V (x, r,m(r)) = 1] = 1

x /∈ L =⇒ for all m(·), P rr[V (x, r,m(r)) = 1] ≤ 1/3

Proof. Recall the original Arthur Merlin protocol. To check if x ∈ L, Arthur first sends Merlin a a
random string r, who responds with a proof m. Arthur then runs a deterministic verifier V (x,m, r)
such that:

x ∈ L =⇒ Prr[V (x,m, r) = 1] ≥ 1− 1/2n

x ∈ L =⇒ Prr[V (x,m, r) = 1] ≤ 1/2n

Notice that we have applied the standard error reduction technique. Now, we use the same covering
property to prove that there exists k = poly(n) such that:

x ∈ L implies that there exists v1, . . . , vk such that for all r there exists m such that V (x, r ⊕
vi,m) = 1 for at least one i. On the other hand, if x /∈ L, the probability that V (x, r ⊕ vi,m) = 1
for at least one i is at most k2−i. Hence, we define the following protocol:

Merlin sends Arthur a sequence v1, . . . , vk satisfying this property. As such a sequence exists,
the all powerful Arthur can compute them. Arthur then sends Merlin a random string r. Merlin
then sends Arthur m and i such that V (x, r⊕ vi,m) = 1, which Arthur verifies. Note that if x ∈ L,
such a pair exists, and if x /∈ L, the probability that such a pair exists can be bounded.

This protocol is not an AM protocol however. It is an MAM protocol. The reason we defined
the protocol this way is that, if Arthur sent Merlin the random string before Merlin sent Arthur the
sequence, it would be trivial for Merlin to find such a vector v such that v ⊕ r ∈ 1x. But now that
we have defined an MAM protocol, we can use the previous theorem that MA ⊆ AM to define a
corresponding AM protocol from this.
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3 AM and the polynomial hierarchy

In this section, we explore the relationship between Arthur Merlin games and the polynomial
hierarchy.

Theorem 3.1.
AM ⊆ Π2

Proof. Recall the proof of the Sipser-Gacs-Lautemann theorem that BPP ⊆ Σ2 ∩ Π2. This proof
is similar to that. Using the AM protocol, we define an expression in Π2 which checks if x ∈ L
For the verifier V , we define the set 1x to be {r : ∃mV (x,m, r) = 1}. We can now use the covering
argument to show that x /∈ L is equivalent to the statement:

For all v1, . . . , vk, there exists r such that for all j ∈ {1, . . . , k}, there exists m such that
V (x,m, r ⊕ vj) = 0. We can rewrite this in prenex form to obtain a Π2 expression for L.

Theorem 3.2. if coNP ⊆ AM , the polynomial hierarchy must collapse to the second level

Proof. We want to show that, assuming coNP ⊆ AM , Σ2SAT ∈ Π2. Consider an instance of
Σ2SAT , ∃x∀yφ(x, y). By know that ∀yφ(x, y) ∈ coNP ∈ AM . Hence we can design an MAM
protocol for Σ2SAT , which implies an AM protocol. But, by the previous theorem, AM ⊆ Π2

which completes the proof.

As Graph isomorphism has an AM protocol, we can derive the following corollary:

Corollary 3.3. If the graph isomorphism is NP complete, the polynomial hierarchy must collapse
to the second level.
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