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1 BPP and the Polynomial Hierarchy

Theorem 1.1 (Gács-Lautemann-Sipser). BPP ⊆ Σ2 ∩ Π2 ⊆ PH. In simplified words, BPP is
in the second level of the polynomial hierarchy.

Proof. Let language L ∈ BPP. We fix some notations/variables.

• x is the input string

• n = |x|

• m = poly(n)

• r is the randomness factor ∈ {0, 1}m

• k = 2m/n

By the erorr reduction technique for BPP, we can assume the existence of a Turing Machine M
satisfying the following:

x ∈ L ⇒ Prr[M(x, r) = 1] ≥ 1− 2−n

x 6∈ L ⇒ Prr[M(x, r) = 1] < 2−n

We define 1x = {r ∈ {0, 1}m : M(x, r) = 1}, which represents the set of random strings where
machine M will accept. We want to show: x ∈ L ⇐⇒ ∃ v1, v2, ..., vk ∈ {0, 1}m, such that ∀y
∈ {0, 1}m, ∨ki=1 [M(x, vi ⊕ y) = 1]. This means that ∃i, such that vi ⊕ y ∈ 1x. Rewriting this

statement would lead to y ∈ (1x ⊕ vi) ≡ y ∈
k⋃

i=1
(1x ⊕ vi).

The following claims are now direct.

Claim 1.2. If x 6∈ L, for any v1, ..., vk, |
k⋃

i=1
(1x ⊕ vi) | < k ∗ 2m−n << 2m

Claim 1.3. If x ∈ L, |1x| ≥ 2m ∗ (1− 2−n)

To show the existence of v1, . . . , vk, we will be using probabilistic method. With high probability

over random choices of vi, we prove that
k⋃

i=1
(1x ⊕ vi) = {0, 1}m. To show this, fix some y ∈

{0, 1}m, and define the “bad” event Ey: y 6∈
k⋃

i=1
(1x ⊕ vi) ≡ v1, ..., vk 6∈ (1x ⊕ y). It follows that

since v1, . . . , vk are independently sampled, we have Pr[Ey] ≤ 2−nk, and by a union bound, Pr[∃y
Ey] ≤ 2m ∗ 2−nk = 2−m < 1. This proves the existence of v1, . . . , vk and hence we conclude that
BPP is in the second level of the polynomial hierarchy.

In fact, we believe a much stronger derandomization hold.

1



Lecture 14: Oct 14, 2021 2

Conjecture 1.4 (P = BPP). Any problem that admits an efficient randomized algorithm (BPP)
can be efficiently derandomized (P).

A strong evidence towards this conjecture comes from the line of work referred to as “Hardness
vs Randomness” that shows ways of using plausible circuit lower bounds to obtain derandomization
results. We note one such result.

Theorem 1.5 (Impagliazzo and Wigderson [IW97]). If ∃ a language L ∈ E = DTIME(2O(n))
that requires 2Ω(n) sized circuits to solve it, then P = BPP.

2 Randomness in the Space-Bounded Setting

We now discuss about the use of randomness in space-bounded setting.

BPSPACE(S(n)) = {L: ∃ a deterministic Turing Machine M deciding L using O(S(n)) space
and 2O(S(n)) time, such that ∀x ∈ {0, 1}∗, Prr[M(x, r) = L(x)] ≥ 2/3}

One can similarly define RPSPACE(S(n)) which as one-sided error.
One important setting is when S(n) = O(log(n)). As an example, we will prove a result that
places undirected connectivity in RL. Note that Reingold [Rei08] proved the much stronger result
that there is a deterministic logspace algorithm for undirected connectiveity. As we will see, the
randomized algorithm is much simpler compared to the more sophisitcated algorithm of Reingold.

Recall

UPATH = {< G, s, t >: G is an undirected graph, such that there is a path from s to t}

We prove the following.

Theorem 2.1 ([AKL+79]). UPATH ∈ RL.

Proof. Given an undirected graph input G:

• s is the source node

• t is the end node

We will first transform the graph to ensure it is regular and of degree 4, and then take a random
walk of O(n4) on the graph G. We accept if at some point in the walk, we reach vertex t, and
reject otherwise. This algorithm can be implemented in O(log(n)) space because it only requires
space to store the current and next vertex in the walk, along with a counter. Thus, we then want
to show that if there is a path from s to t, the algorithm will accept with probability 1/Ω(n).

2.1 Reducing to 4-Regular Graph

We start this proof by reducing to a 4-regular graph, maintaining connectivity, by replacing a
degree d node with a cycle of length d. We also want to ensure that every vertex has a self-loop.

Claim 2.2. There is an implicitly computable function f in log space such that it maps any input
to UPATH < G, s, t > to < G′, s′, t′ > where:

• G′ is a 4-regular graph with a self-loop on each vertex while maintaining graph connectivity
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• ∃ a path from s to t in G iff ∃ a path from s′ to t′ in G′

For each vertex i in G, G′ will have n vertices arranged in a cycle. For each neighboring pair i and
j in G, connect an edge at the ith vertex from the cycle corresponding to j and the jth vertex from
the cycle corresponding to i. We then add either one or two self-loops depending on whether or not
the vertex is only connected to its neighbors on the cycle or if it has a neighbor in a different cycle
respectively. This would make the graph degree equal to 4.

2.2 Explaining Iteration of O(n4) Steps

Hit(G) = maxi,j {Expected number of steps from vertex/node i to vertex/node j}

Theorem 2.3. For a connected d-regular, undirected graph G:

Hit(G) = O(d2n3log(n))

Proof. To be continued next class.
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