
CS 6810: Theory of Computing Fall 2021

Lecture 13: Oct 7, 2021

Lecturer: Eshan Chattopadhyay Scribe: Atul Ganju

1 Introduction

In computational complexity theorem, there exists a family of randomized complexity classes for
which decision problems are taken to be solved by a deterministic Turing Machine given a polyno-
mial number of random coin flips in the size of its input. Recall that we have discussed two such
complexity classes, BPP and RP defined below:

Definition 1.1 (BPP). A language L is in BPP if and only if there exists a deterministic Turing
machine M that runs in polynomial time in the length of its input for all inputs, such that:

• x ∈ L ⇐⇒ Pr
r∼{0,1}p(|x|)

[M(x, r) = 1] ≥ 2/3

• x /∈ L ⇐⇒ Pr
r∼{0,1}p(|x|)

[M(x, r) = 1] < 1/3

Definition 1.2 (RP). A language L is in RP if and only if there exists a deterministic Turing
machine M that runs in polynomial time in the length of its input for all inputs, such that:

• x ∈ L ⇐⇒ Pr
r∼{0,1}p(|x|)

[M(x, r) = 1] ≥ 1/2

• x /∈ L ⇐⇒ Pr
r∼{0,1}p(|x|)

[M(x, r) = 1] = 0

These definitions can be rewritten without random bit strings and with probabilistic Turing Ma-
chines, although it is the same machinery under the hood.

2 Error Reduction by Repetition

Can we reduce our error? It’s easy to see with the same computational resources we can reduce
the error we make when deciding x ∈ L for any L ∈ BPP. Take an arbitrary language L ∈ BPP.
Then there exists a deterministic Turing machine M that decides L with error probability 1/2 in
polynomial time with respect to the length of its input. Then, what if we defined a new Turing
machine M ′ that does the following computation:

M ′(x, (r1, r2, . . . , rt)) = M(x, r1) ∨M(x, r2) ∨ . . . ∨M(x, rt)

where each ri ∈ {0, 1}p(|x|) and t is polynomial with respect to |x|. Clearly, M ′ also runs in
polynomial time with respect to length of its input. So, now lets bound its error probability. By
the definition of RP, we have:

x ∈ L =⇒ Pr[M(x, r1) = 1] = . . . = Pr[M(x, rt) = 1] ≥ 1/2

=⇒ Pr[M ′(x, (r1, r2, . . . , rt)) = 1] ≥ 1− 2−p(|x|)

1

Lecture 13: Oct 7, 2021 2

and,

x /∈ L =⇒ M(x, r1) = . . . = M(x, rt) = 0

=⇒ M ′(x, (r1, r2, . . . , rt)) = 0 ∨ . . . ∨ 0 = 0

implying we can guarantee an exponentially small error by having M ′ make t = O(n) calls to M .
The same can be done for BPP.

Take an arbitrary language L ∈ BPP. Then, again lets define a new Turing machine M ′ that does
the following computation:

M ′(x, (r1, r2, . . . , rt)) = Majority(M(x, r1),M(x, r2), . . . ,M(x, rt))

where each ri ∈ {0, 1}p(|x|) and t is polynomial with respect to |x|. Clearly, M ′ also runs in
polynomial time with respect to length of its input. So, now lets bound its error probability. Observe
that the M(x, ri) are a bunch of identically distributed indicator random variables. Therefore, when
x ∈ L, by linearity of expectation, we have

E

[
t∑

i=1

M(x, ri)

]
=

t∑
i=1

E[M(x, ri)] ≥
2t

3
.

Now, using Chernoff’s Bound, we can write:

Pr[M ′(x, (r1, r2, . . . , rt)) = 1] = Pr[Majority(M(x, r1),M(x, r2), . . . ,M(x, rt)) = 1]

= 1− Pr

[
t∑

i=1

M(x, ri)− E

[
t∑

i=1

M(x, ri)

]
≥ t

6

]
≥ 1− 2e−t/18

implying that again we can guarantee an exponentially small error by having M ′ make t = O(n)
calls to M .

3 Relationship Between BPP and P/poly

Theorem 3.1. BPP ⊂ P/poly

Proof. Take L ∈ BPP. By error reduction, we then have a Turing machine M with the property
that

Pr
x∼{0,1}n

r∼{0,1}p(n)

[M(x, r) = L(x)] ≥ 1− 2−|x|
2
.

It then follows that there exists some r∗ for which:

Pr
x∼{0,1}n

[M(x, r∗) 6= L(x)] ≤ 2−|x|
2

Now, this implies that
Pr

x∼{0,1}n
[M(x, r∗) 6= L(x)] = 0

since if M(x, r∗) failed for even a single x ∈ {0, 1}n, then we’d have the probability that M failed
over all x was at least 2−n, a contradiction. So, we have shown a single r∗ works for all x ∈ L.
Therefore, we could encode r∗ into an advice function for a deterministic Turing machine that is
always correct implying that L ∈ P/poly (note here r∗ depends on |x|).

	Introduction
	Error Reduction by Repetition
	Relationship Between BPP and P/poly

