CS 6810: Theory of Computing Fall 2021

Lecture 13: Oct 7, 2021
Lecturer: Eshan Chattopadhyay Scribe: Atul Ganju

1 Introduction

In computational complexity theorem, there exists a family of randomized complexity classes for
which decision problems are taken to be solved by a deterministic Turing Machine given a polyno-
mial number of random coin flips in the size of its input. Recall that we have discussed two such
complexity classes, BPP and RP defined below:

Definition 1.1 (BPP). A language L is in BPP if and only if there exists a deterministic Turing
machine M that runs in polynomial time in the length of its input for all inputs, such that:

e rcl — Pr [M(z,r)=1]>2/3
r~{0,1}7(2])

o 1 ¢ L — Pr [M(z,r)=1]<1/3
ref0,137(2)
Definition 1.2 (RP). A language L is in RP if and only if there exists a deterministic Turing
machine M that runs in polynomial time in the length of its input for all inputs, such that:

e el — [M(z,r)=1] >1/2

Pr
r~{0,1}P(zD)

o ¢ L — p

M = 1 =
TN{o,ﬁpuzw[(z,7) =1 =0

These definitions can be rewritten without random bit strings and with probabilistic Turing Ma-
chines, although it is the same machinery under the hood.

2 Error Reduction by Repetition

Can we reduce our error? It’s easy to see with the same computational resources we can reduce
the error we make when deciding x € L for any L € BPP. Take an arbitrary language L € BPP.
Then there exists a deterministic Turing machine M that decides L with error probability 1/2 in
polynomial time with respect to the length of its input. Then, what if we defined a new Turing
machine M’ that does the following computation:

M'(z,(r1,72,...,71)) = M(2,71) V M(2,72) V...V M(2,7%)

where each r; € {0,1}?(?D) and t is polynomial with respect to |z|. Clearly, M’ also runs in
polynomial time with respect to length of its input. So, now lets bound its error probability. By
the definition of RP, we have:
xe€l = Pr[M(z,r1)=1]=...=Pr[M(z,7) =1] > 1/2
— Pr[M'(x, (r1,79,...,1)) = 1] > 1 — 277D

Lecture 13: Oct 7, 2021 2

and,
¢ L = M(z,r1)=...=M(z,r) =0
= M'(z,(r1,72,...,7¢))=0V...v0O=0

implying we can guarantee an exponentially small error by having M’ make ¢t = O(n) calls to M.
The same can be done for BPP.

Take an arbitrary language L € BPP. Then, again lets define a new Turing machine M’ that does
the following computation:

M'(z, (r1,7o,...,14)) = Majority(M (x,r1), M (x,72), ..., M(z,1))

where each 7; € {0,1}(#) and t is polynomial with respect to |z|. Clearly, M’ also runs in
polynomial time with respect to length of its input. So, now lets bound its error probability. Observe
that the M (z,r;) are a bunch of identically distributed indicator random variables. Therefore, when
x € L, by linearity of expectation, we have

ZM(x,ri)] = 3" BlM () 2 2.

i=1

E

Now, using Chernoft’s Bound, we can write:

Pr[M'(z, (r1,72,...,1)) = 1] = Pr[Majority (M (z,r1), M (z,72),..., M(x,1¢)) = 1]
—1—P1"[Z:]\4a:7’Z ZMxn] é]
oL geii

implying that again we can guarantee an exponentially small error by having M’ make ¢ = O(n)
calls to M.

3 Relationship Between BPP and P /poly

Theorem 3.1. BPP C P/poly

Proof. Take L € BPP. By error reduction, we then have a Turing machine M with the property
that

P M) = L) = 1-2
re{0,1}P(0)

It then follows that there exists some r* for which:

Pr [M(z,) £ L(z)] < 2712
xw{oﬂ}n[(z,r*) # L(x)] <

Now, this implies that

Pr [M(xz,r") # L(z)] =

x~{0,1}7
since if M (x,r*) failed for even a single x € {0,1}", then we’d have the probability that M failed
over all x was at least 27", a contradiction. So, we have shown a single r* works for all x € L.
Therefore, we could encode r* into an advice function for a deterministic Turing machine that is
always correct implying that L € P/poly (note here r* depends on |z|).

	Introduction
	Error Reduction by Repetition
	Relationship Between BPP and P/poly

