Fall 2021
Lecture 13: Oct 7, 2021
Lecturer: Eshan Chattopadhyay
Scribe: Atul Ganju

1 Introduction

In computational complexity theorem, there exists a family of randomized complexity classes for which decision problems are taken to be solved by a deterministic Turing Machine given a polynomial number of random coin flips in the size of its input. Recall that we have discussed two such complexity classes, BPP and RP defined below:

Definition 1.1 (BPP). A language L is in BPP if and only if there exists a deterministic Turing machine M that runs in polynomial time in the length of its input for all inputs, such that:

- $x \in L \Longleftrightarrow \operatorname{Pr}_{r \sim\{0,1\}^{p(|x|)}}[M(x, r)=1] \geq 2 / 3$
- $x \notin L \Longleftrightarrow \operatorname{Pr}_{r \sim\{0,1\}^{p(|x|)}}[M(x, r)=1]<1 / 3$

Definition 1.2 (RP). A language L is in $\mathbf{R P}$ if and only if there exists a deterministic Turing machine M that runs in polynomial time in the length of its input for all inputs, such that:

- $x \in L \Longleftrightarrow \operatorname{Pr}_{r \sim\{0,1\}^{p(|x|)}}[M(x, r)=1] \geq 1 / 2$
- $x \notin L \Longleftrightarrow \operatorname{Pr}_{r \sim\{0,1\}^{p(|x|)}}[M(x, r)=1]=0$

These definitions can be rewritten without random bit strings and with probabilistic Turing Machines, although it is the same machinery under the hood.

2 Error Reduction by Repetition

Can we reduce our error? It's easy to see with the same computational resources we can reduce the error we make when deciding $x \in L$ for any $L \in \mathbf{B P P}$. Take an arbitrary language $L \in \mathbf{B P P}$. Then there exists a deterministic Turing machine M that decides L with error probability $1 / 2$ in polynomial time with respect to the length of its input. Then, what if we defined a new Turing machine M^{\prime} that does the following computation:

$$
M^{\prime}\left(x,\left(r_{1}, r_{2}, \ldots, r_{t}\right)\right)=M\left(x, r_{1}\right) \vee M\left(x, r_{2}\right) \vee \ldots \vee M\left(x, r_{t}\right)
$$

where each $r_{i} \in\{0,1\}^{p(|x|)}$ and t is polynomial with respect to $|x|$. Clearly, M^{\prime} also runs in polynomial time with respect to length of its input. So, now lets bound its error probability. By the definition of $\mathbf{R P}$, we have:

$$
\begin{aligned}
x \in L & \Longrightarrow \operatorname{Pr}\left[M\left(x, r_{1}\right)=1\right]=\ldots=\operatorname{Pr}\left[M\left(x, r_{t}\right)=1\right] \geq 1 / 2 \\
& \Longrightarrow \operatorname{Pr}\left[M^{\prime}\left(x,\left(r_{1}, r_{2}, \ldots, r_{t}\right)\right)=1\right] \geq 1-2^{-p(|x|)}
\end{aligned}
$$

and,

$$
\begin{aligned}
x \notin L & \Longrightarrow M\left(x, r_{1}\right)=\ldots=M\left(x, r_{t}\right)=0 \\
& \Longrightarrow M^{\prime}\left(x,\left(r_{1}, r_{2}, \ldots, r_{t}\right)\right)=0 \vee \ldots \vee 0=0
\end{aligned}
$$

implying we can guarantee an exponentially small error by having M^{\prime} make $t=O(n)$ calls to M. The same can be done for BPP.

Take an arbitrary language $L \in \mathbf{B P P}$. Then, again lets define a new Turing machine M^{\prime} that does the following computation:

$$
M^{\prime}\left(x,\left(r_{1}, r_{2}, \ldots, r_{t}\right)\right)=\operatorname{Majority}\left(M\left(x, r_{1}\right), M\left(x, r_{2}\right), \ldots, M\left(x, r_{t}\right)\right)
$$

where each $r_{i} \in\{0,1\}^{p(|x|)}$ and t is polynomial with respect to $|x|$. Clearly, M^{\prime} also runs in polynomial time with respect to length of its input. So, now lets bound its error probability. Observe that the $M\left(x, r_{i}\right)$ are a bunch of identically distributed indicator random variables. Therefore, when $x \in L$, by linearity of expectation, we have

$$
E\left[\sum_{i=1}^{t} M\left(x, r_{i}\right)\right]=\sum_{i=1}^{t} E\left[M\left(x, r_{i}\right)\right] \geq \frac{2 t}{3}
$$

Now, using Chernoff's Bound, we can write:

$$
\begin{aligned}
\operatorname{Pr}\left[M^{\prime}\left(x,\left(r_{1}, r_{2}, \ldots, r_{t}\right)\right)=1\right] & =\operatorname{Pr}\left[\operatorname{Majority}\left(M\left(x, r_{1}\right), M\left(x, r_{2}\right), \ldots, M\left(x, r_{t}\right)\right)=1\right] \\
& =1-\operatorname{Pr}\left[\sum_{i=1}^{t} M\left(x, r_{i}\right)-E\left[\sum_{i=1}^{t} M\left(x, r_{i}\right)\right] \geq \frac{t}{6}\right] \\
& \geq 1-2 e^{-t / 18}
\end{aligned}
$$

implying that again we can guarantee an exponentially small error by having M^{\prime} make $t=O(n)$ calls to M.

3 Relationship Between BPP and P/poly

Theorem 3.1. BPP $\subset \mathbf{P} /$ poly

Proof. Take $L \in \mathbf{B P P}$. By error reduction, we then have a Turing machine M with the property that

$$
\operatorname{Pr}_{\substack{x \sim\{0,1\}^{n} \\ r \sim\{0,1\}^{p(n)}}}[M(x, r)=L(x)] \geq 1-2^{-|x|^{2}} .
$$

It then follows that there exists some r^{*} for which:

$$
\operatorname{Pr}_{x \sim\{0,1\}^{n}}\left[M\left(x, r^{*}\right) \neq L(x)\right] \leq 2^{-|x|^{2}}
$$

Now, this implies that

$$
\operatorname{Pr}_{x \sim\{0,1\}^{n}}\left[M\left(x, r^{*}\right) \neq L(x)\right]=0
$$

since if $M\left(x, r^{*}\right)$ failed for even a single $x \in\{0,1\}^{n}$, then we'd have the probability that M failed over all x was at least 2^{-n}, a contradiction. So, we have shown a single r^{*} works for all $x \in L$. Therefore, we could encode r^{*} into an advice function for a deterministic Turing machine that is always correct implying that $L \in \mathbf{P} /$ poly (note here r^{*} depends on $|x|$).

