
CS 6810: Theory of Computing Fall 2021

Lecture 11: Sep 30, 2021

Lecturer: Eshan Chattopadhyay Scribe: James Meyers

1 More on the Polynomial Hierarchy

In previous class, we introduced two distinct unary operators on complexity classes, DP and @P .
For any complexity class C, and for any language L Ď t0, 1u˚:

Definition 1.1. L P DPC ðñ pDL1 P Cp@xpx P L ðñ Dy P t0, 1upolyp|x|qxx, yy P L1qqq.

Definition 1.2. L P @PC ðñ pDL1 P Cp@xpx P L ðñ @y P t0, 1upolyp|x|qxx, yy P L1qqq.

Recall the visual representation of the polynomial hierarchy. Below, directed arrows represent
subsethood.

...

Π2Σ2

Π1Σ1

Π0P“ “Σ0

DPΠ0 “ “ @PΣ0

DPΠ1 “ @PΣ1“

Σi`1“DPΠi Πi`1 “ @PΣi

Definition 1.3. The polynomial hierarchy (PH) collapses to its ith level if Di P N such that PH “

Σi.

We believe that PH does not collapse, and this is often used as evidence towards other conjec-
tures in complexity theory. For instance, we will show that if all languages in NP has polynomial
sized circuits, then PH collapses (to the second level).

We begin by proving some easy claims that show properties of PH.

Claim 1.4. P “ NP implies that PH collapses to its 0th level.

Proof. Assume P “ NP. This can be proven by induction. Let the inductive hypothesis, P piq
be that Σi,Πi Ď P. For P p1q, we have already that NP “ Σ1 Ď P. Given some L P Π1. We
have L̄ P NP 6 L̄ P P 6 L P coP “ P. Now given some i ě 1, we show P piq ùñ P pi ` 1q.
Given some L P Σi`1. By definition, L P DPΠi. Since Πi Ď P by the IH, and P Ď Πi for all i,
we have L P DPP 6 L P NP 6 L P P. Given some L P Πi`1, by definition L P @PΣi 6 L P
@PP (by the IH) 6 L P coNP 6 L P P (by the IH, coNP Ď P). So, since @i ě 1, Σi Ď P, clearly
PH “

Ť

iPN Σi “ P.

1

Lecture 11: Sep 30, 2021 2

Claim 1.5. NP “ coNP ùñ PH “ NP.

Proof. Again, we use induction. First, assume NP “ coNP. @i ě 1, P piq is that Σi,Πi Ď Σ1.
For P p1q, this is immediate. Given some i, we show P piq ùñ P pi ` 1q. Assume P piq. Given
some L P Σi`1 6 L P DPΠi. By the induction hypothesis, then, L P DPNP “ NP. Given some
L P Πi`1 6 L P @PΣi. Again, the IH gives us L P @PNP “ @P coNP “ coNP “ NP. So, @i ě 1, we
have Σi,Πi Ď Σ1. Then, clearly PH “

Ť

iPN Σi “ Σ1.

Corollary 1.6. For all positive i, pΣi “ Πi ùñ PH “ Σi “ Πiq.

This can be seen by simply repeating the induction performed above, and changing the base
case based on any particular given i (showing P pnq for all n ě i). For any o ă i, Σo Ď Σi follows
from the definition of PH.

Claim 1.7. If PH has a complete problem, then it collapses.

Proof. Suppose that L is PH-complete. Then for some i, L P Σi _ L P Πi. Assume L P Σi. Given
any L1 P PH, we have L1 ďP L. So, L1 P Σi and thus PH Ď Σi 6 PH “ Σi. An exactly analogous
argument can be given for L P Πi. In either case, PH collapses to either Σi or Πi for some i.

Corollary 1.8. PH “ PSPACE ùñ PH collapses.

This follows from the fact that we know a PSPACE-complete problem, namely TQBF .
We are now ready to prove the belief (based on PH does not collapse) that there is a language

in NP with super-polynomial circuit lower bounds.

Theorem 1.9 (Karp-Lipton). NP Ď P/poly ùñ PH “ Σ2.

Proof. If we can show that Π2SAT P Σ2, we will have Π2 Ď Σ2 (as it is complete for Π2 under
poly-time reductions). Then, for any L P Σ2, since L P Π2, we have L P Σ2, which implies L P Π2

and subsequently, then Σ2 Ď Π2 6 Σ2 “ Π2. Then by corollary 1.5, PH “ Σ2.
Recall that φ P Π2SAT ðñ @yDzpφpy, zq “ 1q. Given any fixed y, let Ly be defined by

φ P Ly ðñ Dzpφpy, zq “ 1q. It is clear to see that p@yφ P Lyq ðñ φ P Π2SAT. For any
arbitrary y, clearly Ly P NP. So, because NP Ď P/poly, we know there is some poly-size circuit
family tCnpy, ¨qu such that @φ@n, Cnpy, φq “ 1 ðñ Dzφpy, zq “ 1.

We will use tCnpy, ¨qu to build a new poly-size circuit family, tC 1npy, ¨qu where @φ, C 1npy, φq “ z
such that φpy, zq “ 1, if such a z exists. Build tC 1npy, ¨qu using tCnpy, ¨qu based on the search-to-
decision reduction (see Theorem 2.19 in Arora & Barak). To do this, we can use Cn as an ’oracle’
for C 1n and compute Cnpy, φpy, 0z2z3...qq. If this yields 1, we set z1 “ 0 and do the same for z2.
Else, we set z1 “ 1 and continue.

So, @y, φ, we have C 1npy, φq “ z ðñ Dzφpy, zq “ 1 6 φpy, C 1npy, φqq “ 1 ðñ Dzφpy, zq “ 1.
The circuit family can be guessed non-deterministically. In other words, @yDzφpy, zq “ 1 ðñ

DtC 1npy, ¨qu@yφpy, C
1
npy, φqq “ 1 ðñ @ypφ P Lyq ðñ φ P Π2SAT. So, then, Π2SAT P Σ2 and the

rest follows from the argument above.

1.1 Oracle definitions for PH

Recall the definition of ΣiSAT , which are complete problems for Σi.

Definition 1.10. For a boolean formula φ and i vectors of boolean variables,
φ P ΣiSAT ðñ Dy1@y2...yipφpy1, y2, ..., yiq “ 1q.

Lecture 11: Sep 30, 2021 3

Claim 1.11. @i ě 1, Σi “ NPΣi´1SAT.

Proof. We prove a slightly weaker claim to exemplify this: Σ2 “ NPSAT. Given some L, assume
L P Σ2. By definition, then @x, x P L ðñ Dy P t0, 1upolyp|x|q@z P t0, 1upolyp|x|qMpx, y, zq “ 1 for
some poly-time turing machine M . We show that L P NPSAT by constructing a poly-time NDTM
with oracle access to SAT that decides L. Given some x P t0, 1u˚. First, non-deterministically
guess y. Then, given a fixed y, we define Ly by @x, x P Ly ðñ @z P t0, 1upolyp|x|qMpx, y, zq “ 1.
Therefore Ly P Π1 6 Ly ďP SAT . So, we poly-time transform x to a corresponding SAT query, use
the oracle, and flip the answer to determine whether x P Ly. If for any non-deterministically guessed
y, we get x P Ly, then x P L. Therefore, this NDTM decides L and so L P NPSAT 6 Σ2 Ď NPSAT.

Given some L, assume L P NPSAT. Then there is some NDTM M with oracle access to SAT
that decides L. In other words, @x, x P L ðñ Dy P t0, 1upolyp|x|qV SATpx, yq “ 1 for a poly-time
verifier V that has a SAT oracle. In the execution of V , it will make some series of oracle queries
φ1, φ2, ...φm, each accompanied with a corresponding answer a1, a2, ..., am. For each φi, if ai “ 1,
then we know Dui such that φipuiq “ 1 and if ai “ 0, then for all possible assignments vi, φipviq “ 0.
For any x, if M accepts it, then there is some series of non-deterministic choices y and SAT queries
with correct answers that M used. We can guess a y P t0, 1upolyp|x|q, each query φi, each answer
ai, and each assignment ui such that M accepts x using certificate (or series of non-deterministic
choices) y and @vk@i P r1..mspai “ 0^ φipvkq “ 0q _ pai “ 1^ φipuiq “ 1q. In other words, for any
x, we have

x P L ðñ Dy P t0, 1upolyp|x|q, φ1, ..., φm,

a1, ..., am, u1, ..., um

@i P r1..ks, v,

M accepts x using the guessed answers^ pai “ 0^ φipvq “ 0q _ pai “ 1^ φipuiq “ 1q

Checking whether M accepts, once we have guessed non-deterministic transition function choices
and queries/answers, can be done in poly-time with some small blow-up due to simulating M ,
and similarly verifying φipuq for any assignment u can be done in polynomial time. There can
only be polynomially-many queries φi, because M runs in non-deterministic polynomial time. So,
L P Σ2.

	More on the Polynomial Hierarchy
	Oracle definitions for PH

