Low Precision Arithmetic and Quantization

CS6787 Lecture 9 - Spring 2024

Final Project Proposal Discussion

Split up into groups of 4-5
Do not be in a group with your project partners Each of you presents a 2-minute pitch Then discuss after everyone has pitched

Reminder: Final Project Requirements

- Implement a machine learning system to solve a problem
- Use one or more of the techniques we discussed in class
- The mere use of a LLM in the project does not constitute a technique
- To achieve an improvement over some baseline method
- Measuring both statistical performance and hardware performance
- Or at least evaluate and attempt to achieve such a speedup
- Otherwise, very open-ended
- Groups of up to three

Project proposals due NEXT MONDAY

- The main body should be about one page in length.
- It should describe the project you intend to do.
- It should contain at least one citation of a relevant paper that we did not cover in class.
- It should include some preliminary or exploratory work you've already done, that helps to support the idea that your project is feasible.
- Don't need a lot of work, just a nonzero amount of work supporting feasibility.
- In addition to the one-page text proposal, one short experiment plan per person

Experiment plan

- The hypothesis
- The proxy
- The protocol
- Expected results

Low Precision Arithmetic and Quantization

CS6787 Lecture 9 - Spring 2024

Memory as a Bottleneck

- So far, we've just been talking about compute
- e.g. techniques to decrease the amount of compute by decreasing iterations
- But machine learning systems need to process huge amounts of data
- Need to store, update, and transmit this data
- As a result: memory is of critical importance
- Many applications are memory-bound

Memory: The Simplified Picture

Memory: The Multicore Picture

Socket 1

Socket 2

Memory: The Distributed Picture

What can we learn from these pictures?

- Many more memory boxes than compute boxes
- And even more as we zoom out
- Memory has a hierarchical structure
- Locality matters
- Some memory is closer and easier to access than others
- Also have standard concerns for CPU cache locality

What limits us?

- Memory capacity
- How much data can we store locally in RAM and/or in cache?
- Memory bandwidth
- How much data can we load from some source in a fixed amount of time?
- Memory locality
- Roughly, how often is the data that we need stored nearby?
- Power
- How much energy is required to operate all of this memory?

One way to help: Low-Precision Arithmetic

Low-Precision Arithmetic

- Traditional ML systems use 32-bit or 64-bit floating point numbers
- But do we actually need this much precision?
- Especially when we have inputs that come from noisy measurements
- Idea: instead use 8-bit or 16-bit numbers to compute
- Can be either floating point or fixed point
- On an FPGA or ASIC can use arbitrary bit-widths

Low Precision and Memory

- Major benefit of low-precision: uses less memory bandwidth

Low Precision and Memory

- Major benefit of low-precision: takes up less space

Low Precision and Parallelism

- Another benefit of low-precision: use SIMD instructions to get more parallelism on CPU

SIMD Precision
SIMD Parallelism

Low Precision and Power

- Low-precision computation can even have a super-linear effect on energy

- Memory energy can also have quadratic dependence on precision
algorithm runtime

Effects of Low-Precision Computation

- Pros
- Fit more numbers (and therefore more training examples) in memory
- Store more numbers (and therefore larger models) in the cache
- Transmit more numbers per second
- Compute faster by extracting more parallelism
- Use less energy
- Cons
- Limits the numbers we can represent
- Introduces quantization error when we store a full-precision number in a low-precision representation

Numeric Formats in Machine Learning
How do we represent numbers as bit patterns on a computer?

A representative setup: DNN training

Many of the large-scale learning tasks we want to accelerate are deep learning tasks.
A deep neural network (DNN) looks like this:

Many layers connected to each other in series.
To train, we compute the loss gradient and run stochastic gradient descent:

$$
w_{t+1}=w_{t}-\alpha_{t} \nabla f\left(w_{t} ; x_{t}\right)
$$

A representative setup: DNN training

All of the signals

 here are vectors of real numbers.- Standard method of computing gradient for SGD uses backp But how are they
- Computationally, it looks like this on the level of a single layer activations $_{\text {prev }}$

stored on a computer?

The standard approach
 Single-precision floating point (FP32)

- 32-bit floating point numbers

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

sign 8-bit exponent 23-bit mantissa

- Usually, the represented value is
represented number $=(-1)^{\text {sign }} \cdot 2^{\text {exponent }-127} \cdot 1 . b_{22} b_{21} b_{20} \ldots b_{0}$
- Has a machine epsilon (measures relative error) of $\varepsilon_{\text {machine }} \approx 6.0 \times 10^{-8}$

An example

- Let's convert the number -6.5 to floating point.

$$
\begin{aligned}
6.5 & =13 \times 2^{-1}=(8+4+1) \times 2^{-1} \\
& =1101_{b} \times 2^{-1}=1.101_{b} \times 2^{2} \\
& =1.101_{b} \times 2^{(129-127)} \\
& =1.101_{b} \times 2^{\left(10000001_{b}-127\right)}
\end{aligned}
$$

11000000110100000000000000000000

What is the machine epsilon?

- Represents the relative error of the floating-point format
- One half the distance between 1 and the next-largest floating point number
- If there are \mathbf{m} mantissa bits, $\varepsilon_{\text {machine }} \approx 2^{-m-1}$
- Because the smallest representable number $>\mathbf{1}$ is $1+2^{-m}$

Relative error bound. If $x \in \mathbb{R}$ is any number in range of the format, and \hat{x} is the nearest number representable in the format, then

$$
|\hat{x}-x| \leq \varepsilon_{\text {machine }} \cdot|x| .
$$

Similarly, if $x, y \in \mathbb{R}$ are two floating-point numbers, \star is any primitive numerical operation (e.g.,$+ \times$, etc.), and \circledast is the floating-point "version" of that op, then

$$
|(x \circledast y)-(x \star y)| \leq \varepsilon_{\text {machine }} \cdot|x \star y| .
$$

A low-precision alternative

FP16/Half-precision floating point

- 16-bit floating point numbers

$$
\begin{array}{lll}
1 \text { 1-bit } & 5 \text {-bit } & 10 \text {-bit } \\
\text { sign } & \text { exponent } & \text { significand }
\end{array}
$$

- Usually, the represented value is

$$
x=(-1)^{\text {sign bit }} \cdot 2^{\text {exponent }-15} \cdot 1 . \text { significand } 2
$$

Numeric properties of 16 -bit floats

- A larger machine epsilon (larger rounding errors) of $\varepsilon_{\text {machine }}=4.9 \times 10^{-4}$
- Compare 32-bit floats which had $\varepsilon_{\text {machine }} \approx 6.0 \times 10^{-8}$
- A smaller overflow threshold (easier to overflow) at about 6.5×10^{4}
- Compare 32-bit floats where it's 3.4×10^{38}
- A larger underflow threshold (easier to underflow) at about 6.0×10^{-8}.
- Compare 32-bit floats where it's 1.4×10^{-45}

With all these drawbacks, does anyone use this?

Half-precision floating point support

- Supported on most modern machine-learning-targeted GPUs

- E.g. efficient implementation as far back as NVIDIA Pascal GPUs

Pascal Hardware Numerical Throughput

GPU	DFMA (FP64 TFLOP/s)	FFMA (FP32 TFLOP/s)	HFMA2 (FP16 TFLOP/s)	DP4A (INT8 TIOP/s)	DP2A (INT16/8 TIOP/s)
GP100 (Tesla P100 NVLink)	5.3	10.6	21.2	NA	NA
GP102 (Tesla P40)	0.37	11.8	0.19	43.9	23.5
GP104 (Tesla P4)	0.17	8.9	0.09	21.8	10.9

Table 1: Pascal-based Tesla GPU peak arithmetic throughput for half-, single-, and double-precision fused multiplyadd instructions, and for 8 - and 16 -bit vector dot product instructions. (Boost clock rates are used in calculating peak throughputs. TFLOP/s: Tera Floating-point Operations per Second. TIOP/s: Tera Integer Operations per Second. https://devblogs.nvidia.com/parallelforall/mixed-precision-programming-cuda-8/

- Good empirical results for deep learning

Another common option Bfloat16 - "brain floating point"

- Another 16-bit floating point number

1-bit
sign

8-bit
exponent
7-bit
significand $\quad \varepsilon_{\text {machine }}=3.9 \times 10^{-3}$

- Main benefit: numeric range is now the same as single-precision float
- Since it looks like a truncated 32-bit float
- This is useful because ML applications are more tolerant to quantization error than they are to overflow

A more recent option fp8

- An 8-bit floating point number: e5m2

1-bit	5-bit	2-bit
sign	exponent	significand

- Now supported in TensorCores on NVIDIA GPUs

A more recent option fp8

- An 8-bit floating point number: e4m3

1-bit	4-bit	3-bit
sign	exponent	significand

- Now supported in TensorCores on NVIDIA GPUs

An alternative to low-precision floating point Fixed point numbers

$\cdot \mathbf{p}+\mathbf{q}+\mathbf{1}$-bit fixed point number

- The represented number is

$$
\begin{aligned}
x & =(-1)^{\text {sign bit }}\left(\text { integer part }+2^{-q} \cdot \text { fractional part }\right) \\
& =2^{-q} \cdot \text { whole thing as signed integer }
\end{aligned}
$$

Arithmetic on fixed point numbers

- Simple and efficient
- Can just use preexisting integer processing units
- Lower power than floating point operations with the same number of bits
- Mostly exact
- Can always convert to a higher-precision representation to avoid overflow
- Can represent a much narrower range of numbers than float
- Has an absolute error bound, not relative error bound

Support for fixed-point arithmetic

- Anywhere integer arithmetic is supported
- CPUs, GPUs
- Although not all GPUs support 8-bit integer arithmetic
- And AVX2 does not have all the 8 -bit arithmetic instructions we'd like
- Particularly effective on FPGAs and ASICs
- Where floating point units are costly
- Some support for 4-bit int on GPUs

A powerful hybrid approach Block Floating Point

- Motivation: when storing a vector of numbers, often these numbers all lie in the same range.
- So they will have the same or similar exponent, if stored as floating point.
- Block floating point shares a single exponent among multiple numbers.

A more specialized approach Custom Quantization Points

- Even more generally, we can just have a list of $\mathbf{2}^{\mathbf{b}}$ numbers and say that these are the numbers a particular lowprecision string represents
- We can think of the bit string as indexing a number in a dictionary
- Gives us total freedom as to range and scaling
- But computation can be tricky
- Some research into using this with hardware support
- "The ZipML Framework for Training Models with End-to-End Low Precision: The Cans, the Cannots, and a Little Bit of Deep Learning" (Zhang et al 2017)

Vector quantization

- Group K numbers together into a K-dimensional vector and quantize this to a K-dimensional codebook.
- Ways to make the codebook:
- Choose via k-Means
- Choose it to be a lattice with nice packing properties
- E.g. E8 lattice
- Learn it via SGD
- What is this most useful for? Weights? Activations?

Low-precision formats in general

- These are some of the most common formats used in ML
- ...but we're not limited to using only these formats!
- There are many other things we could try
- For example, floating point numbers with different exponent/mantissa sizes
- Fixed point numbers with nonstandard widths
- Problem: there's no hardware support for these other things yet, so it's hard to get a sense of how they would perform.
- Need to simulate

Other Numerical Formats Used Rarely

- BigFloats
- Higher-precision floating-point numbers that are implemented in software
- Are sometimes necessary when you need very high precision, such as for very poorly conditioned problems
- Exact arithmetic with rational numbers
- Lets you do arithmetic with no error
- Numbers have variable length, because they require arbitrarily large integers
- Can also support countable field extensions of the rational numbers
- But these are very rarely used because of performance implications

Low-Precision SGD

Using low-precision arithmetic for training

How is precision used for training

- Recall our training diagram
- Each of these signals forms a class of numbers
- Generally, we assign a precision to each of the classes, and different classes can have different precisions

Number classes extended from
"Understanding and Optimizing
Asynchronous Low-Precision Stochastic
Gradient Descent," ISCA 2017:

- Dataset numbers
- Model/weight numbers
- Gradient numbers
- Communication numbers
- Activation numbers
- Backward pass numbers
- Weight accumulator
- Linear layer accumulator

Quantize classes independently

- Using low-precision for different number classes has different effects on throughput.
- Quantizing the dataset numbers improves memory capacity and overall training example throughput
- Quantizing the model numbers improves cache capacity and saves on compute
- Quantizing the gradient numbers saves compute
- Quantizing the communication numbers saves on expensive inter-worker memory bandwidth

Quantize classes independently

- Using low-precision for different number classes has different effects on statistical efficiency and accuracy.
- Quantizing the dataset numbers means you're solving a different problem
- Quantizing the model numbers adds noise to each gradient step, and often means you can't exactly represent the solution
- Quantizing the gradient numbers can add errors to each gradient step
- Quantizing the communication numbers can add errors which cause workers' local models to diverge, which slows down convergence

Quantization-Aware Training \& The Straight-Through Estimator

- A "function" where

$$
\begin{aligned}
& \mathcal{Q}_{\text {straight-thru }}(x)=\operatorname{round}(x) \\
& \mathcal{Q}_{\text {straight-thru }}^{\prime}(x)=1
\end{aligned}
$$

- Just round in the forward pass, and pretend the round is not there in the backward pass

A modern recipe for training in low-precision: Mixed Precision Training

- Use fp16 to store model and activations wherever this is possible without significant loss of precision
- Use loss scaling to stop small gradient values \& backward signals from underflowing

Mixed Precision Training

Sharan Narang*, Gregory Diamos, Erich Elsen ${ }^{\dagger}$
Baidu Research
\{sharan, gdiamos\}@baidu.com

Paulius Micikevicius*, Jonah Alben, David Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, Hao Wu NVIDIA
\{pauliusm, alben, dagarcia, bginsburg, mhouston, okuchaiev, gavenkatesh, skyw\}@nvidia.com

- Keep optimizer state in fp32

Theoretical Guarantees for Low Precision

- Reducing precision adds noise in the form
- Two approaches to rounding:

Using this, we can prove guarantees that SGD converges with a low precision model.

- nearest rounding - round to nearest number
- stochastic rounding - round randomly: $\boldsymbol{E}[Q(x)]=x$

Why stochastic rounding?

- Imagine running SGD with a low-precision model with update rule

$$
w_{t+1}=\tilde{Q}\left(w_{t}-\alpha_{t} \nabla f\left(w_{t} ; x_{t}, y_{t}\right)\right)
$$

- Here, \mathbf{Q} is an unbiased quantization function
- In expectation, this is just gradient descent

$$
\begin{aligned}
\mathbf{E}\left[w_{t+1} \mid w_{t}\right] & =\mathbf{E}\left[\tilde{Q}\left(w_{t}-\alpha_{t} \nabla f\left(w_{t} ; x_{t}, y_{t}\right)\right) \mid w_{t}\right] \\
& =\mathbf{E}\left[w_{t}-\alpha_{t} \nabla f\left(w_{t} ; x_{t}, y_{t}\right) \mid w_{t}\right] \\
& =w_{t}-\alpha_{t} \nabla f\left(w_{t}\right)
\end{aligned}
$$

Implementing stochastic rounding

- To implement an unbiased to-integer quantizer: sample $u \sim \operatorname{Unif}[0,1]$, then set $Q(x)=\lfloor x+u\rfloor$
-Why is this unbiased?

$$
\begin{aligned}
\mathbf{E}[Q(x)] & =\lfloor x\rfloor \cdot \mathbf{P}(Q(x)=\lfloor x\rfloor)+(\lfloor x\rfloor+1) \cdot \mathbf{P}(Q(x)=\lfloor x\rfloor+1) \\
& =\lfloor x\rfloor+\mathbf{P}(Q(x)=\lfloor x\rfloor+1)=\lfloor x\rfloor+\mathbf{P}(\lfloor x+u\rfloor=\lfloor x\rfloor+1) \\
& =\lfloor x\rfloor+\mathbf{P}(x+u \geq\lfloor x\rfloor+1)=\lfloor x\rfloor+\mathbf{P}(u \geq\lfloor x\rfloor+1-x) \\
& =\lfloor x\rfloor+1+(\lfloor x\rfloor+1-x)=x .
\end{aligned}
$$

Doing stochastic rounding efficiently

- We still need an efficient way to do unbiased rounding
- Pseudorandom number generation can be expensive
- E.G. doing C++ rand or using Mersenne twister takes many clock cycles
- Empirically, we can use very cheap pseudorandom number generators
- And still get good statistical results
- For example, we can use XORSHIFT which is just a cyclic permutation

Limitations of stochastic rounding

- Technique only makes sense when we're summing up a bunch of independently rounded values
- Works best for the accumulators in the optimizer!
- But in the Mixed Precision recipe, we store those accumulators in full-precision anyway
- ...so there's not much point in the stochastic rounding
- Also it introduces a lot of noise to the training process.

Benefits of low-precision On a real device...

nVIDIA
NVIDIA H10O Tensor Core GPU

Technical Specifications	
	H100 SXM
FP64	34 teraFLOPS
FP64 Tensor Core	67 teraFLOPS
FP32	67 teraFLOPS
TF32 Tensor Core	989 teraFLOPS ${ }^{2}$
BFLOAT16 Tensor Core	1,979 teraFLOPS 2
FP16 Tensor Core	1,979 teraFLOPS 2
FP8 Tensor Core	3,958 teraFLOPS ${ }^{2}$
INT8 Tensor Core	3,958 TOPS 2

Drawbacks of low-precision

- The draw back of low-precision arithmetic is the low precision!
- Low-precision computation means we accumulate more rounding error in our computations
- These rounding errors can add up throughout the learning process, resulting in less accurate learned systems
- The trade-off of low-precision: throughput/memory vs. accuracy

Classical Example: Low-Precision Neural Net

(b) Test accuracies of low-precision SGD on LeNet neural network after 5000 passes, for various datasets.

A modern LLM example

Figure 5: Quantizing OPT models up to 66B parameters. Our method QuIP is the first PTQ procedure to achieve good quantization at 2 bits per weight, across a variety of model sizes and evaluation tasks.

Next time...

- Post-training quantization \& compression!
- How can we leverage low-precision arithmetic to make large models work on small devices?

Questions?

- Upcoming things
- Project proposal due NEXT MONDAY!

