Low Precision Arithmetic and Quantization

CS6787 Lecture 9 — Spring 2024

Final Project Proposal Discussion

Split up into groups of 4–5
Do not be in a group with your project partners
Each of you presents a 2-minute pitch
Then discuss after everyone has pitched

Reminder: Final Project Requirements

- Implement a machine learning system to solve a problem
- Use one or more of the techniques we discussed in class
 - The mere use of a LLM in the project does not constitute a technique
- To achieve an improvement over some baseline method
 - Measuring both statistical performance and hardware performance
 - Or at least evaluate and attempt to achieve such a speedup
- Otherwise, very open-ended
 - Groups of up to three

Project proposals due NEXT MONDAY

- The main body should be about one page in length.
- It should describe the project you intend to do.
- It should contain at least one citation of a relevant paper that we did not cover in class.
- It should include some preliminary or exploratory work you've already done, that helps to support the idea that your project is feasible.
 - Don't need a lot of work, just a nonzero amount of work supporting feasibility.
- In addition to the one-page text proposal, one short experiment plan per person

Experiment plan

The hypothesis

The proxy

The protocol

Expected results

Low Precision Arithmetic and Quantization

CS6787 Lecture 9 — Spring 2024

Memory as a Bottleneck

- So far, we've just been talking about compute
 - e.g. techniques to decrease the amount of compute by decreasing iterations
- But machine learning systems need to process huge amounts of data
- Need to store, update, and transmit this data
- As a result: memory is of critical importance
 - Many applications are memory-bound

Memory: The Simplified Picture

Memory: The Multicore Picture

Memory: The Distributed Picture

What can we learn from these pictures?

- Many more memory boxes than compute boxes
 - And even more as we zoom out

- Memory has a hierarchical structure
- Locality matters
 - Some memory is closer and easier to access than others
 - Also have standard concerns for CPU cache locality

What limits us?

Memory capacity

How much data can we store locally in RAM and/or in cache?

Memory bandwidth

 How much data can we load from some source in a fixed amount of time?

Memory locality

Roughly, how often is the data that we need stored nearby?

Power

How much energy is required to operate all of this memory?

One way to help: Low-Precision Arithmetic

Low-Precision Arithmetic

 Traditional ML systems use 32-bit or 64-bit floating point numbers

- But do we actually need this much precision?
 - Especially when we have inputs that come from noisy measurements
- Idea: instead use 8-bit or 16-bit numbers to compute
 - Can be either floating point or fixed point
 - On an FPGA or ASIC can use arbitrary bit-widths

Low Precision and Memory

• Major benefit of low-precision: uses less memory bandwidth

(assuming ~40 GB/sec memory bandwidth)

Low Precision and Memory

• Major benefit of low-precision: takes up less space

(assuming ~32 MB cache)

Low Precision and Parallelism

• Another benefit of low-precision: use **SIMD instructions** to get more parallelism on CPU

Low Precision and Power

• Low-precision computation can even have a super-linear effect on energy

• Memory energy can also have quadratic dependence on precision

Effects of Low-Precision Computation

Pros

- Fit more numbers (and therefore more training examples) in memory
- Store more numbers (and therefore larger models) in the cache
- Transmit more numbers per second
- Compute faster by extracting more parallelism
- Use less energy

Cons

- Limits the numbers we can represent
- Introduces quantization error when we store a full-precision number in a low-precision representation

Numeric Formats in Machine Learning

How do we represent numbers as bit patterns on a computer?

A representative setup: DNN training

Many of the large-scale learning tasks we want to accelerate are deep learning tasks.

A deep neural network (DNN) looks like this:

Many layers connected to each other in series.

To train, we compute the loss gradient and run stochastic gradient descent:

$$w_{t+1} = w_t - \alpha_t \nabla f(w_t; x_t)$$

A representative setup: DNN training

All of the signals here are vectors of real numbers.

Standard method of computing gradient for SGD uses backp

But how are they stored on a

• Computationally, it looks like this on the level of a single layer

The standard approach Single-precision floating point (FP32)

• 32-bit floating point numbers

• Usually, the represented value is

represented number =
$$(-1)^{\text{sign}} \cdot 2^{\text{exponent}-127} \cdot 1.b_{22}b_{21}b_{20} \dots b_0$$

• Has a machine epsilon (measures relative error) of $\varepsilon_{\rm machine} \approx 6.0 \times 10^{-8}$

An example

• Let's convert the number -6.5 to floating point.

$$6.5 = 13 \times 2^{-1} = (8 + 4 + 1) \times 2^{-1}$$
$$= 1101_b \times 2^{-1} = 1.101_b \times 2^2$$
$$= 1.101_b \times 2^{(129-127)}$$
$$= 1.101_b \times 2^{(10000001_b - 127)}$$

1 10000001 10100000000000000000000

Or, confusingly, twice this.

What is the machine epsilon?

- Represents the relative error of the floating-point format
 - One half the distance between 1 and the next-largest floating point number
 - If there are **m** mantissa bits, $\varepsilon_{\text{machine}} \approx 2^{-m-1}$
 - Because the smallest representable number > 1 is $1 + 2^{-m}$

Relative error bound. If $x \in \mathbb{R}$ is any number in range of the format, and \hat{x} is the nearest number representable in the format, then

$$|\hat{x} - x| \le \varepsilon_{\text{machine}} \cdot |x|.$$

Similarly, if $x, y \in \mathbb{R}$ are two floating-point numbers, \star is any primitive numerical operation (e.g. +, \times , etc.), and \otimes is the floating-point "version" of that op, then

$$|(x \otimes y) - (x \star y)| \le \varepsilon_{\text{machine}} \cdot |x \star y|.$$

A low-precision alternative FP16/Half-precision floating point

• 16-bit floating point numbers

• Usually, the represented value is

$$x = (-1)^{\text{sign bit}} \cdot 2^{\text{exponent}-15} \cdot 1.\text{significand}_2$$

Numeric properties of 16-bit floats

- A larger machine epsilon (larger rounding errors) of $\varepsilon_{\text{machine}} = 4.9 \times 10^{-4}$
 - Compare 32-bit floats which had $\varepsilon_{\rm machine} \approx 6.0 \times 10^{-8}$
- A smaller overflow threshold (easier to overflow) at about 6.5×10^4
 - Compare 32-bit floats where it's 3.4×10^{38}
- A larger underflow threshold (easier to underflow) at about 6.0×10^{-8} .
 - Compare 32-bit floats where it's 1.4×10^{-45}

With all these drawbacks, does anyone use this?

Half-precision floating point support

- Supported on most modern machine-learning-targeted GPUs
 - E.g. efficient implementation as far back as NVIDIA Pascal GPUs

Pascal Hardware Numerical Throughput

GPU	DFMA (FP64 TFLOP/s)	FFMA (FP32 TFLOP/s)	HFMA2 (FP16 TFLOP/s)	DP4A (INT8 TIOP/s)	DP2A (INT16/8 TIOP/s)
GP100 (Tesla P100 NVLink)	5.3	10.6	21.2	NA	NA
GP102 (Tesla P40)	0.37	11.8	0.19	43.9	23.5
GP104 (Tesla P4)	0.17	8.9	0.09	21.8	10.9

Table 1: Pascal-based Tesla GPU peak arithmetic throughput for half-, single-, and double-precision fused multiply-add instructions, and for 8- and 16-bit vector dot product instructions. (Boost clock rates are used in calculating peak throughputs. TFLOP/s: Tera Floating-point Operations per Second. TIOP/s: Tera Integer Operations per Second. https://devblogs.nvidia.com/parallelforall/mixed-precision-programming-cuda-8/

• Good empirical results for deep learning

Another common option Bfloat16 — "brain floating point"

• Another 16-bit floating point number

- Main benefit: numeric range is now the same as single-precision float
 - Since it looks like a truncated 32-bit float
 - This is useful because ML applications are **more tolerant to quantization error** than they are to overflow

A more recent option fp8

• An 8-bit floating point number: e5m2

• Now supported in TensorCores on NVIDIA GPUs

A more recent option fp8

• An 8-bit floating point number: e4m3

Now supported in TensorCores on NVIDIA GPUs

An alternative to low-precision floating point Fixed point numbers

• p + q + 1 -bit fixed point number

• The represented number is

$$x = (-1)^{\text{sign bit}}$$
 (integer part $+ 2^{-q} \cdot \text{fractional part}$)
= $2^{-q} \cdot \text{whole thing as signed integer}$

Arithmetic on fixed point numbers

Simple and efficient

- Can just use preexisting integer processing units
- Lower power than floating point operations with the same number of bits

Mostly exact

- Can always convert to a higher-precision representation to avoid overflow
- Can represent a much narrower range of numbers than float
- Has an absolute error bound, not relative error bound

Support for fixed-point arithmetic

- Anywhere integer arithmetic is supported
 - CPUs, GPUs
 - Although not all GPUs support 8-bit integer arithmetic
 - And AVX2 does not have all the 8-bit arithmetic instructions we'd like
- Particularly effective on FPGAs and ASICs
 - Where floating point units are costly
- Some support for 4-bit int on GPUs

A powerful hybrid approach Block Floating Point

- Motivation: when storing a vector of numbers, often these numbers all lie in the same range.
 - So they will have the same or similar exponent, if stored as floating point.
- Block floating point shares a single exponent among multiple numbers.

A more specialized approach Custom Quantization Points

- Even more generally, we can just have a list of **2**^b numbers and say that these are the numbers a particular low-precision string represents
 - We can think of the bit string as indexing a number in a dictionary
- Gives us total freedom as to range and scaling
 - But computation can be tricky
- Some research into using this with hardware support
 - "The ZipML Framework for Training Models with End-to-End Low Precision: The Cans, the Cannots, and a Little Bit of Deep Learning" (Zhang et al 2017)

Vector quantization

 Group K numbers together into a K-dimensional vector and quantize this to a K-dimensional codebook.

- Ways to make the codebook:
 - Choose via k-Means
 - Choose it to be a lattice with nice packing properties
 - E.g. **E8 lattice**
 - Learn it via SGD

What is this most useful for? Weights? Activations?

Low-precision formats in general

- These are some of the most common formats used in ML
 - ...but we're not limited to using only these formats!
- There are many other things we could try
 - For example, floating point numbers with different exponent/mantissa sizes
 - Fixed point numbers with nonstandard widths
- Problem: there's no hardware support for these other things yet, so it's hard to get a sense of how they would perform.
 - Need to simulate

Other Numerical Formats Used Rarely

BigFloats

- Higher-precision floating-point numbers that are implemented in software
- Are sometimes necessary when you need very high precision, such as for very poorly conditioned problems
- Exact arithmetic with rational numbers
 - Lets you do arithmetic with no error
 - Numbers have variable length, because they require arbitrarily large integers
 - Can also support countable field extensions of the rational numbers
 - But these are very rarely used because of performance implications

Low-Precision SGD

Using low-precision arithmetic for training

How is precision used for training

- Recall our training diagram
 - Each of these signals forms a class of numbers
 - Generally, we assign a precision to each of the classes, and different classes can have different precisions

Number classes extended from "Understanding and Optimizing Asynchronous Low-Precision Stochastic Gradient Descent," ISCA 2017:

- Dataset numbers
- Model/weight numbers
- Gradient numbers
- Communication numbers
- Activation numbers
- Backward pass numbers
- Weight accumulator
- Linear layer accumulator

Quantize classes independently

- Using low-precision for different number classes has different effects on throughput.
 - Quantizing the dataset numbers improves memory capacity and overall training example throughput
 - Quantizing the model numbers improves cache capacity and saves on compute
 - Quantizing the gradient numbers saves compute
 - Quantizing the communication numbers saves on expensive inter-worker memory bandwidth

Quantize classes independently

- Using low-precision for different number classes has different effects on statistical efficiency and accuracy.
 - Quantizing the dataset numbers means you're solving a different problem
 - Quantizing the **model numbers** adds noise to each gradient step, and often means you can't exactly represent the solution
 - Quantizing the gradient numbers can add errors to each gradient step
 - Quantizing the communication numbers can add errors which cause workers' local models to diverge, which slows down convergence

Quantization-Aware Training & The Straight-Through Estimator

• A "function" where

$$Q_{\text{straight-thru}}(x) = \text{round}(x)$$
$$Q'_{\text{straight-thru}}(x) = 1$$

 Just round in the forward pass, and pretend the round is not there in the backward pass

A modern recipe for training in low-precision: Mixed Precision Training

 Use fp16 to store model and activations wherever this is possible without significant loss of precision

 Use loss scaling to stop small gradient values & backward signals from underflowing

Keep optimizer state in fp32

Published as a conference paper at ICLR 2018

MIXED PRECISION TRAINING

Sharan Narang*, Gregory Diamos, Erich Elsen†
Baidu Research
{sharan, gdiamos}@baidu.com

Paulius Micikevicius*, Jonah Alben, David Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, Hao Wu NVIDIA

{pauliusm, alben, dagarcia, bginsburg, mhouston, okuchaiev, gavenkatesh, skyw}@nvidia.com

Theoretical Guarantees for Low Precision

• Reducing precision adds noise in the form

Using this, we can prove **guarantees** that SGD converges with a low precision model.

- Two approaches to rounding:
 - nearest rounding round to nearest number
 - stochastic rounding round randomly: $E[Q(x)] \stackrel{\vee}{=} x$

Why stochastic rounding?

• Imagine running SGD with a low-precision model with update rule

$$w_{t+1} = \tilde{Q} \left(w_t - \alpha_t \nabla f(w_t; x_t, y_t) \right)$$

- Here, **Q** is an unbiased quantization function
- In expectation, this is just gradient descent

$$\mathbf{E}[w_{t+1}|w_t] = \mathbf{E}\left[\tilde{Q}\left(w_t - \alpha_t \nabla f(w_t; x_t, y_t)\right) \middle| w_t\right]$$

$$= \mathbf{E}\left[w_t - \alpha_t \nabla f(w_t; x_t, y_t) \middle| w_t\right]$$

$$= w_t - \alpha_t \nabla f(w_t)$$

Implementing stochastic rounding

• To implement an unbiased to-integer quantizer: sample $u \sim \mathrm{Unif}[0,1]$, then set Q(x) = |x+u|

Why is this unbiased?

$$\mathbf{E}[Q(x)] = \lfloor x \rfloor \cdot \mathbf{P}(Q(x) = \lfloor x \rfloor) + (\lfloor x \rfloor + 1) \cdot \mathbf{P}(Q(x) = \lfloor x \rfloor + 1)$$

$$= \lfloor x \rfloor + \mathbf{P}(Q(x) = \lfloor x \rfloor + 1) = \lfloor x \rfloor + \mathbf{P}(\lfloor x + u \rfloor = \lfloor x \rfloor + 1)$$

$$= \lfloor x \rfloor + \mathbf{P}(x + u \ge \lfloor x \rfloor + 1) = \lfloor x \rfloor + \mathbf{P}(u \ge \lfloor x \rfloor + 1 - x)$$

$$= \lfloor x \rfloor + 1 + (\lfloor x \rfloor + 1 - x) = x.$$

Doing stochastic rounding efficiently

We still need an efficient way to do unbiased rounding

- Pseudorandom number generation can be expensive
 - E.G. doing C++ rand or using Mersenne twister takes many clock cycles
- Empirically, we can use very cheap pseudorandom number generators
 - And still get good statistical results
 - For example, we can use XORSHIFT which is just a cyclic permutation

Limitations of stochastic rounding

- Technique only makes sense when we're summing up a bunch of independently rounded values
- Works best for the accumulators in the optimizer!
- But in the Mixed Precision recipe, we store those accumulators in full-precision anyway
 - ...so there's not much point in the stochastic rounding
- Also it introduces a lot of noise to the training process.

Benefits of low-precision On a real device...

NVIDIA H100 Tensor Core GPU

Technical Specifications	
	H100 SXM
FP64	34 teraFLOPS
FP64 Tensor Core	67 teraFLOPS
FP32	67 teraFLOPS
TF32 Tensor Core	989 teraFLOPS ²
BFLOAT16 Tensor Core	1,979 teraFLOPS ²
FP16 Tensor Core	1,979 teraFLOPS ²
FP8 Tensor Core	3,958 teraFLOPS ²
INT8 Tensor Core	3,958 TOPS ²
-	

https://resources.nvidia.com/en-us-tensor-core/nvidia-tensor-core-gpu-datasheet

Drawbacks of low-precision

- The draw back of low-precision arithmetic is the low precision!
- Low-precision computation means we accumulate more rounding error in our computations
- These rounding errors can add up throughout the learning process, resulting in less accurate learned systems
- The trade-off of low-precision: throughput/memory vs. accuracy

Classical Example: Low-Precision N

(b) Test accuracies of low-precision SGD on LeNet neural network after 5000 passes, for various datasets.

A modern LLM example

Figure 5: Quantizing OPT models up to 66B parameters. Our method QuIP is the first PTQ procedure to achieve good quantization at 2 bits per weight, across a variety of model sizes and evaluation tasks.

Next time...

Post-training quantization & compression!

 How can we leverage low-precision arithmetic to make large models work on small devices?

Questions?

- Upcoming things
 - Project proposal due **NEXT MONDAY**!