
Parallelism
CS6787 Lecture 7 — Spring 2024

So far

• We’ve been talking about algorithms

• We’ve been talking about ways to optimize their
parameters

• But we haven’t talked about the underlying hardware
• How does the properties of the hardware affect our

performance?
• How should we implement our algorithms to best utilize our

resources?

What does modern ML hardware look like?

• Lots of different types
•CPUs
•GPUs
• FPGAs
• Specialized accelerators

• Common thread: all of these architectures are highly
parallel

Parallelism: A History

• The good old days: if I want my program to run faster, I can
just wait
• Moore’s law —transistors on a chip doubles every 18 months
• Dennard scaling — transistors shrink, power density stays constant

• This “free lunch” drove a wave of innovation in computing
• Applications with bigger data were constantly becoming feasible
• Drove a couple of AI boom-bust cycles

• But also drove a lack of concern for systems efficiency
• Why work on making efficient systems when I can just wait instead?

Moore’s Law: A Graphic

The End of the Free Lunch

• In 2005, Herb Sutter declares — “The Free Lunch Is
Over” and that there will be “A Fundamental Turn
Toward Concurrency in Software”
• He’s not the only one that was saying this.

• You can see this on the previous figure as trends start to
flatten out.

• Why? Power
• Dennard scaling started breaking down
• Too much heat at high clock frequencies — chip will melt

The Solution: Parallelism

• I can re-write my program in parallel

• Moore’s law is still in effect
• Transistor density still increasing exponentially

• Use the transistors to add parallel units to the chip
• Increases throughput, but not speed

The Effect of Parallelism

• Pros:
• Can continue to get speedups from added transistors
• Can even get speedups beyond a single chip or a single

machine

• Cons:
• Can’t just sit and wait for things to get faster
• Need to work to get performance improvements
• Need to develop new frameworks and methods to parallelize

automatically

What benefits can we expect

• If we run in parallel on N copies of our compute unit,
naively we would expect our program to run N times
faster

• Does this always happen in practice?

• No! Why?

Amdahl’s Law

• Gives the theoretical speedup of a program when it’s
parallelized

• Slatency is total speedup
• p is the parallelizable portion of the algorithm
• s is the number of parallel workers/amount of parallelism

From Wikipedia

Amdahl’s Law (continued)

From Wikipedia

Consequences of Amdahl’s Law

• Diminishing marginal returns as we increase the
parallelism

• Can never actually achieve a linear or super-linear
speedup as the amount of parallel workers increases

• Is this always true in practice?

• No! Sometimes we do get super-linear speedup.
When?

What does modern parallel hardware look like?

• CPUs
• Many parallel cores
• Deep parallel cache hierarchies — taking up most of the area
• Often many parallel CPU sockets in a machine

• GPUs
• Can run way more numerical computations in parallel than a CPU
• Loads of lightweight cores running together

• In general: can run many heterogeneous machines in
parallel in a cluster

Sources of parallelism
From most fine-grained to most course-grained

On CPUs: Instruction-Level Parallelism

• How many instructions in the instruction stream can
be executed simultaneously?

• For example:
• C = A * B
• Z = X * Y
• S = C + Z

• Important for pipelining, and used fully in superscalar
processors.

The first two
instructions here can be
executed in parallel

On CPUs: SIMD/Vector Parallelism

• Single-Instruction Multiple-Data
• Perform the same operation on multiple data points in parallel

• Uses registers that store and process vectors of multiple
data points
• Latest standards use 512-bit registers, which can hold 16 floating

point numbers

• A long series of instruction set extensions for this on CPUs
• SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX, AVX2, AVX-512, …

• Critical for dense linear algebra operations common in ML

On CPUs: Multicore Parallelism
• Modern CPUs come with multiple identical cores on the

same die

• Cores can work independently on independent parallel
tasks
• Unlike ILP and SIMD

• Cores communicate through shared memory abstraction
• They can read and write the same memory space
• This is done through a sophisticated cache hierarchy

• Significant cost to synchronize multiple CPUs working
together

On CPUs: Hyperthreading

• Similar to multi-core

• Multiple threads running on the same core at the same
time and sharing resources

• Slower than multi-core with the same thread count
• Because resources are shared

• Usually don’t have to worry about it

On CPUs: Multi-socket parallelism

• Modern motherboards have multiple sockets for CPUs

• Cores on these CPUs still communicate through shared
memory

• But latency/throughput to access memory that is
“closer” to another CPU chip is worse than accessing
your own memory

• This is called non-uniform memory access (NUMA)

DEMO

On GPUs: Stream Processing
• Given a stream of data, apply a series of operations to the

data
• Operations are called kernel functions

• This type of compute pattern is well-suited to GPU
computation
• Because compared with CPUs, GPUs have much more of their area

devoted to arithmetic but much less devoted to memory and
caches

• There’s additional parallel structure within a GPU
• For example, in CUDA threads running the same program are

organized into warps and run at the same time

CUDA Parallelism Model

• “Kernel” a program element running on the GPU

• “Warp” a group of 32 threads that run together
• Share an instruction stream — mostly

• “Block” a group of up to 1024 threads that can interact with
each other via shared memory & synchronize
• All threads in a block run on a single Streaming Multiprocessor (SM)

• “Grid” multiple blocks running on the GPU
• Partitioned across all the SMs

GPU Tensor Cores

• Special hardware that computes a small fixed-size
matrix-matrix multiply
• e.g. 16x16, 8x32, 32x8

• A single tensor core matmul is a collaborative operation
of all the threads in a warp
• Or else runs asynchronously from the CUDA cores

https://developer.nvidia.com/blog/programming-tensor-cores-cuda-9/

On specialized accelerators and ASICs

• Whatever you want!

• The parallelism opportunities are limited only by the
available transistors

• We will see many new accelerators for ML with
different parallel structures and resources
• Some will look like FPGAs: e.g. CGRAs
• Some will just speed up one particular operation, such as

matrix-matrix multiply

The Distributed Setting

• Many workers communicate over a network
• Possibly heterogeneous workers including CPUs, GPUs, and

ASICs

• Usually no shared memory abstraction
• Workers communicate explicitly through passing messages

• Latency much higher than all other types of
parallelism
• Often need fundamentally different algorithms to handle this

How to use parallelism in machine
learning
From most fine-grained to most course-grained

Recall

• Stochastic gradient descent

• Can write this as an algorithm:

• For t = 1 to T
• Choose a training example at random
• Compute the gradient and update the model
• Repeat.

xt+1 = xt � ↵rf(xt; yĩt)

How to run SGD in parallel?

• There are several places where we can extract
parallelism from SGD.

• We can use any or all of these places
• Often we use different ones to correspond to the different

sources of parallelism we have in the hardware we are using.

Parallelism within the Gradient Computation

• Try to compute the gradient samples themselves in
parallel

• Problems:
• We run this so many times, we will need to synchronize a lot

• Typical place to use: instruction level parallelism, SIMD
parallelism
• And distributed parallelism when using model/pipeline

parallelism

xt+1 = xt � ↵rf(xt; yĩt)

Parallelism with Minibatching

• Try to parallelize across the minibatch sum

• Problems:
• Still run this so many times, we will need to synchronize a lot
• Can have a tradeoff with statistical efficiency, since too much

minibatching can harm convergence

• Typical place to use: all types of parallelism

xt+1 = xt �
↵

B

BX

b=1

rf
�
xt; yĩb

�

Parallelism across iterations

• Try to compute multiple iterations of SGD in parallel
• Parallelize the outer loop — usually a good idea

• Problems:
• Naively, the outer loop is sequential, so we can’t do this without

fine-grained locking and frequent synchronization

• Typical place to use: multi-core/multi-socket/cluster
parallelism

xt+1 = xt � ↵rf(xt; yĩt)
xt+1 = xt � ↵rf(xt; yĩt)
xt+1 = xt � ↵rf(xt; yĩt)
xt+1 = xt � ↵rf(xt; yĩt)

Parallelism for hyperparameter optimization

• Just run multiple copies of the whole algorithm
independently, and use them to do hyperparameter
optimization

• Problems:
• Can’t do this if you don’t want to do hyperparameter optimization
• Isn’t actually useful once you’ve already set your parameters

• Typical place to use: distributed computation

Parallelism for ensembling

• Just like before, run multiple copies of the whole
algorithm independently, and use them to produce an
ensemble classifier

• Problems:
• Can’t do this if you don’t want to train an ensemble classifier
• Now the difficulty for learning

• Typical place to use: distributed computation

What about our other methods?

• We can speed up all our methods with parallel
computing
• Minibatching — has a close connection with parallelism
• SVRG
• Momentum

• And any SGD-like algorithm lets us use the same ways
to extract parallelism from it
• Things like gradient descent, stochastic coordinate descent,

stochastic gradient Langevin dynamics, and many others.

Asynchronous Parallelism

Limits on parallel performance

• Synchronization
• Have to synchronize to keep the workers aware of each other’s

updates to the model — otherwise can introduce errors

• Synchronization can be very expensive
• Have to stop all the workers and wait for the slowest one
• Have to wait for several round-trip times through a high-

latency channel

• Is there something we can do about this?

Idea: Just Don’t Synchronize

• Not synchronizing adds errors due to race conditions

• But our methods were already noisy — maybe these
errors are fine

• If we don’t synchronize, get almost perfect parallel
speedup

Fast Parallel SGD: HOGWILD!
Multiple parallel workers

Asynchronous parallel updates (no locks) to a single shared model

xt

Distributed Learning
CS6787 Lecture 7/8 — Fall 2024

Main idea: use multiple machines to do
learning.

Why distribute?
• Train more quickly
• Train models too large to fit on one

machine
• Train when the data are inherently

distributed

Distributed computing basics

•Distributed parallel computing involves two or
more machines collaborating on a single task
by communicating over a network.
• Distributed computing requires explicit (i.e. written in

software) communication among the workers.
• No shared memory abstraction! (Unlike parallelism

on 1 machine)

• There are a few basic patterns of
communication that are used by distributed
programs.

Basic patterns of distributed communication

Push: Machine A
sends some data to
machine B.

A B
Pull: Machine B
requests some data
from machine A.

A B

A
C1
C2
C3
C4

Broadcast: Machine A
sends data to many
machines.

Reduce: Compute some reduction of
data on multiple machines and
materialize result on B.C1

C2
C3
C4

B

Basic patterns of distributed communication (cont’d)

All-reduce: Compute some
reduction of data on multiple
machines and materialize result on
all those machines.

C1
C2
C3
C4

C1
C2
C3
C4

Wait: Pause until
another machine
says to continue.

A B

⏸

Barrier: Wait for all
workers to reach some
point in their code.C1

C2
C3
C4

C1
C2
C3
C4

All these operations can be
synchronous or
asynchronous.

Overlapping computation and communication

• Communicating over the network can have high latency
• we want to hide this latency

• An important principle of distributed computing is
overlapping computation and communication

• For the best performance, we want our workers to still be
doing useful work while communication is going on
• rather than having to stop and wait for the communication to finish
• sometimes called a stall
• asynchronous communication can help a lot here

Running SGD with All-reduce

• All-reduce gives us a simple way of running learning
algorithms such as SGD in a distributed fashion.

• Simply put, the idea is to just parallelize the minibatch.
We start with an identical copy of the parameter on
each worker.

• Recall that SGD update step looks like:

Lecture 22: Distributed Machine Learning and the

Parameter Server

CS4787 — Principles of Large-Scale Machine Learning Systems

So far we’ve been talking about ways to scale our machine learning pipeline that focus on a single machine.
But if we really want to scale up to huge datasets and models, eventually one machine won’t be enough. This
lecture will cover methods for using multiple machines to do learning.

Distributed computing basics. Distributed parallel computing involves two or more machines collab-
orating on a single task by communicating over a network. Unlike parallel programming on a single machine,
distributed computing requires explicit (i.e. written in software) communication among the workers. There
are a few basic patterns of communication that are used by distributed programs:

• Push. Machine A sends some data to machine B.

• Pull. Machine B requests some data from machine A. (This differs from push only in terms of who
initiates the communication.)

• Broadcast. Machine A sends some data to many machines C1, C2, . . . , Cn.

• Reduce. Compute some reduction (usually a sum) of data on multiple machines C1, C2, . . . , Cn and
materialize the result on one machine B.

• All-reduce. Compute some reduction (usually a sum) of data on multiple machines C1, C2, . . . , Cn and
materialize the result on all those machines C1, C2, . . . , Cn.

• Wait. One machine pauses its computation and waits for data to be received from another machine.

Communicating over the network can have high latency, so an important principle of parallel computing
is overlapping computation and communication. For the best performance, we want our workers to
still be doing useful work while communication is going on (rather than having to stop and wait for the
communication to finish).

Running SGD with all-reduce. All-reduce gives us a simple way of running learning algorithms such
as SGD in a distributed fashion. Simply put, the idea is to just parallelize the minibatch. We start with an
identical copy of the parameter wt on each worker. If the SGD update step is

wt+1 = wt � ↵t ·
1

B

BX

b=1

rfib,t(wt),

and there are M worker machines such that B = M ·B0, then we can re-write this update step as

wt+1 = wt � ↵t ·
1

M

MX

m=1

1

B0

B0X

b=1

rfim,b,t(wt).

Now, we assign the computation of the sum when m = 1 to worker 1, the computation of the sum when
m = 2 to worker 2, et cetera. After all the gradients are computed, we can perform the outer sum with an

1

Running SGD with All-reduce (continued)

• If

• Now, we assign the computation of the sum when m = 1
to worker 1, the computation of the sum when m = 2 to
worker 2, et cetera.

• After all the gradients are computed, we can perform
the outer sum with an all-reduce operation.

Lecture 22: Distributed Machine Learning and the

Parameter Server

CS4787 — Principles of Large-Scale Machine Learning Systems

So far we’ve been talking about ways to scale our machine learning pipeline that focus on a single machine.
But if we really want to scale up to huge datasets and models, eventually one machine won’t be enough. This
lecture will cover methods for using multiple machines to do learning.

Distributed computing basics. Distributed parallel computing involves two or more machines collab-
orating on a single task by communicating over a network. Unlike parallel programming on a single machine,
distributed computing requires explicit (i.e. written in software) communication among the workers. There
are a few basic patterns of communication that are used by distributed programs:

• Push. Machine A sends some data to machine B.

• Pull. Machine B requests some data from machine A. (This differs from push only in terms of who
initiates the communication.)

• Broadcast. Machine A sends some data to many machines C1, C2, . . . , Cn.

• Reduce. Compute some reduction (usually a sum) of data on multiple machines C1, C2, . . . , Cn and
materialize the result on one machine B.

• All-reduce. Compute some reduction (usually a sum) of data on multiple machines C1, C2, . . . , Cn and
materialize the result on all those machines C1, C2, . . . , Cn.

• Wait. One machine pauses its computation and waits for data to be received from another machine.

Communicating over the network can have high latency, so an important principle of parallel computing
is overlapping computation and communication. For the best performance, we want our workers to
still be doing useful work while communication is going on (rather than having to stop and wait for the
communication to finish).

Running SGD with all-reduce. All-reduce gives us a simple way of running learning algorithms such
as SGD in a distributed fashion. Simply put, the idea is to just parallelize the minibatch. We start with an
identical copy of the parameter wt on each worker. If the SGD update step is

wt+1 = wt � ↵t ·
1

B

BX

b=1

rfib,t(wt),

and there are M worker machines such that B = M ·B0, then we can re-write this update step as

wt+1 = wt � ↵t ·
1

M

MX

m=1

1

B0

B0X

b=1

rfim,b,t(wt).

Now, we assign the computation of the sum when m = 1 to worker 1, the computation of the sum when
m = 2 to worker 2, et cetera. After all the gradients are computed, we can perform the outer sum with an

1

Lecture 22: Distributed Machine Learning and the

Parameter Server

CS4787 — Principles of Large-Scale Machine Learning Systems

So far we’ve been talking about ways to scale our machine learning pipeline that focus on a single machine.
But if we really want to scale up to huge datasets and models, eventually one machine won’t be enough. This
lecture will cover methods for using multiple machines to do learning.

Distributed computing basics. Distributed parallel computing involves two or more machines collab-
orating on a single task by communicating over a network. Unlike parallel programming on a single machine,
distributed computing requires explicit (i.e. written in software) communication among the workers. There
are a few basic patterns of communication that are used by distributed programs:

• Push. Machine A sends some data to machine B.

• Pull. Machine B requests some data from machine A. (This differs from push only in terms of who
initiates the communication.)

• Broadcast. Machine A sends some data to many machines C1, C2, . . . , Cn.

• Reduce. Compute some reduction (usually a sum) of data on multiple machines C1, C2, . . . , Cn and
materialize the result on one machine B.

• All-reduce. Compute some reduction (usually a sum) of data on multiple machines C1, C2, . . . , Cn and
materialize the result on all those machines C1, C2, . . . , Cn.

• Wait. One machine pauses its computation and waits for data to be received from another machine.

Communicating over the network can have high latency, so an important principle of parallel computing
is overlapping computation and communication. For the best performance, we want our workers to
still be doing useful work while communication is going on (rather than having to stop and wait for the
communication to finish).

Running SGD with all-reduce. All-reduce gives us a simple way of running learning algorithms such
as SGD in a distributed fashion. Simply put, the idea is to just parallelize the minibatch. We start with an
identical copy of the parameter wt on each worker. If the SGD update step is

wt+1 = wt � ↵t ·
1

B

BX

b=1

rfib,t(wt),

and there are M worker machines such that B = M ·B0, then we can re-write this update step as

wt+1 = wt � ↵t ·
1

M

MX

m=1

1

B0

B0X

b=1

rfim,b,t(wt).

Now, we assign the computation of the sum when m = 1 to worker 1, the computation of the sum when
m = 2 to worker 2, et cetera. After all the gradients are computed, we can perform the outer sum with an

1

Running SGD with All-reduce (continued)

• After this all-reduce, the whole sum (which is essentially
the minibatch gradient) will be present on all the
machines
• so each machine can now update its copy of the parameters

• Since sum is same on all machines, the parameters will
update in lockstep

• Statistically equivalent to sequential SGD!

all-reduce operation, after which the full sum

MX

m=1

1

B0

B0X

b=1

rfim,b,t(wt)

will be present on all the worker machines. From here, each worker can individually compute the new value
of wt+1 and update its own parameter vector; after this update, the values of the parameters on each worker
will be the same. This corresponds to the following algorithm.

Algorithm 1 Distributed SGD with All-Reduce
input: loss function examples f1, f2, . . ., number of machines M , per-machine minibatch size B0

input: learning rate schedule ↵t, initial parameters w0, number of iterations T
for m = 1 to M run in parallel on machine m

load w0 from algorithm inputs
for t = 1 to T do

select a minibatch im,1,t, im,2,t, . . . , im,B0,t of size B0

compute gm,t
1

B0

B0X

b=1

rfim,b,t(wt�1)

all-reduce across all workers to compute Gt =
MX

m=1

gm,t

update model wt wt�1 �
↵t

M
·Gt

end for

end parallel for

return wT (from any machine)

It is straightforward to see how one could use the same all-reduce pattern to run variants of SGD such as
Adam and SGD+Momentum.

Benefits of distributed SGD with all-reduce:

• It’s easy to reason about, since it’s statistically equivalent to minibatch SGD.

• It’s easy to implement, since all the worker machines have the same role and it runs on top of standard
distributed computing primitives.

Downsides of distributed SGD with all-reduce:

• While the communication for the all-reduce is happening, the workers are (for the most part) idle.
We’re not overlapping computation and communication.

• The effective minibatch size is growing with the number of machines, and for cases where we don’t
want to run with a large minibatch size for statistical reasons, this can prevent us from scaling to large
numbers of machines using this method.

Where do we get the training examples from? There are two general options for distributed learning:

• Have one or more non-worker servers dedicated to storing the training examples (e.g. a distributed
in-memory filesystem), and have the worker machines load training examples from those servers.

• Partition the training examples among the workers themselves and store them locally in memory on
the workers.

2

Same approach can be used for
momentum, Adam, etc.

Benefits of distributed SGD with All-reduce

• The algorithm is easy to reason about, since it’s
statistically equivalent to minibatch SGD.
• And we can use the same hyperparameters for the most part.

• The algorithm is easy to implement
• since all the worker machines have the same role and it runs

on top of standard distributed computing primitives.

Drawbacks of distributed SGD with all-reduce

• We’re not overlapping computation and communication.
• While the communication for the all-reduce is happening, the

workers are idle.

• The effective minibatch size is growing with the number
of machines
• If we don’t want to run with a large minibatch size for statistical

reasons, this can prevent us from scaling to large numbers of
machines using this method.

• Potentially requires lots of network bandwidth to
communicate to all workers.

Where do we get the training examples from?

• There are two general options for distributed learning.

• Training data servers
• Have one or more non-worker servers dedicated to storing the

training examples (e.g. a distributed in-memory filesystem)
• The worker machines load training examples from those

servers.

• Partitioned dataset
• Partition the training examples among the workers

themselves and store them locally in memory on the workers.

The Parameter Server Model

The Basic Idea

• Recall from the early lectures in this course that a lot of
our theory talked about the convergence of
optimization algorithms.
• This convergence was measured by some function over the

parameters at time t (e.g. the objective function or the norm of
its gradient) that is decreasing with t, which shows that the
algorithm is making progress.

• For this to even make sense, though, we need to be able
to talk about the value of the parameters at time t as the
algorithm runs.
• E.g. in SGD, we had

The parameter server model. Recall from the early lectures in this course that a lot of our theory
talked about the convergence of optimization algorithms. This convergence was measured by some function
over the parameters at time t (e.g. the objective function or the norm of its gradient) that is decreasing with
t, which shows that the algorithm is making progress. For this to even make sense, though, we need to be
able to talk about the value of the parameters at time t as the algorithm runs. E.g. in SGD, we had

wt+1 = wt � ↵trfit(wt)

and here wt is the value of the parameters after t timesteps of the algorithm.

For a program running on a single machine, the meaning of this is usually trivial: the value of the parameters
at time t is just the value of some array in the memory hierarchy (backed by DRAM) at that time. But in a
distributed setting, there is no shared memory, and communication must be done explicitly. Each machine
will usually have one or more copies of the parameters live at any given time, some of which may have been
updates less recently than others, especially if we want to do something more complicated than all-reduce.
This raises the question: when reasoning about a distributed algorithm, what we should consider to be the value
of the parameters a given time?

For SGD with all-reduce, we can answer this question easily, since the value of the parameters is the same
on all workers (it’s guaranteed to be the same by the all-reduce operation). We just appoint this identical
shared value to be the value of the parameters at any given time.

The parameter server model answers this question differently by appointing a single machine, the parameter
server, the explicit responsibility of maintaining the current value of the parameters. The most up-to-date
gold-standard parameters are the ones stored in memory on the parameter server. The parameter server
updates its parameters by using gradients that are computed by the other machines, known as workers, and
pushed to the parameter server. Periodically, the parameter server broadcasts its updated parameters to all
the other worker machines, so that they can use the updated parameters to compute gradients.

Here is a simple diagram of the parameter server architecture.

parameter server

worker
1

worker
2

worker
3

· · · worker
M

training data

workers send
gradients to

parameter server

parameter server
sends new parameters

to workers

There are many ways to learn using a parameter server model, but one of the most common is asynchronous

distributed training. This corresponds to the following algorithm.

3

Parameter Server Basics Continued
• For a program running on a single machine, the value of the

parameters at time t is just the value of some array in the
memory hierarchy (backed by DRAM) at that time.

• But in a distributed setting, there is no shared memory, and
communication must be done explicitly.
• Each machine will usually have one or more copies of the

parameters live at any given time, some of which may have been
updates less recently than others, especially if we want to do
something more complicated than all-reduce.

• This raises the question: when reasoning about a
distributed algorithm, what we should consider to be the
value of the parameters a given time?

For SGD with all-reduce, we can answer this
question easily, since the value of the parameters is
the same on all workers (it’s guaranteed to be the
same by the all-reduce operation). We just appoint
this identical shared value to be the value of the
parameters at any given time.

The Parameter Server Model
• The parameter server model answers this question

differently by appointing a single machine, the parameter
server, the explicit responsibility of maintaining the current
value of the parameters.
• The most up-to-date gold-standard parameters are the ones stored

in memory on the parameter server.

• The parameter server updates its parameters by using
gradients that are computed by the other machines, known
as workers, and pushed to the parameter server.

• Periodically, the parameter server broadcasts its updated
parameters to all the other worker machines, so that they
can use the updated parameters to compute gradients.

Parameter server model: visually

• A common model for distributed ML

Centralized
parameter server

Parallel workers

Parallel workers

Parallel workers

Parallel workers

Training
data

• workers send gradients
to parameter server

• parameter server sends
parameters back to
workers

Learning with the parameter server

• Two options when learning with a parameter server

• Synchronous distributed training
• Similar to all-reduce, but with gradients summed on a central

parameter server
• Still equivalent to sequential minibatch SGD

• Asynchronous distributed training
• Compute and send gradients and add them to the model as

soon as possible
• Broadcast updates whenever they are available

Parameter server summary

• The parameter server holds the central copy of the
weights

• Each worker computes gradients on minibatches
the data
• Then sends those gradients back to the parameter server

• Periodically, the worker pulls an updated copy of the
weights from the parameter server.

• All this can be done asynchronously.

Multiple parameter servers
• If the parameters are too numerous for a single parameter server

to handle, we can use multiple parameter server machines.

• We partition the parameters among the multiple parameter
servers
• Each server is only responsible for maintaining the parameters in its

partition.
• When a worker wants to send a gradient, it will partition that gradient

vector and send each chunk to the corresponding parameter server; later, it
will receive the corresponding chunk of the updated model from that
parameter server machine.

• This lets us scale up to very large models!

Other Ways To Distribute
The methods we discussed so far distributed across the minibatch
(for all-reduce SGD) and across iterations of SGD (for asynchronous
parameter-server SGD).
But there are other ways to distribute that are used in practice too.

Decentralized learning

• Idea: learn without any central coordination
• No parameter server; each worker has its own copy of the

model

•Workers update by doing the following:
• Run an SGD update step using an example stored on that

worker,
• Average the worker’s current model with the models of

some other workers, usually its neighbors in some sparse
graph
• This limits total communication

• This is sometimes called a gossip algorithm

“Can Decentralized Algorithms Outperform
Centralized Algorithms? A Case Study for
Decentralized Parallel Stochastic Gradient
Descent.” NeurIPS 2017

Decentralization cont’d

•Roughly three senses in which an algorithm can
be “decentralized”

•Application layer: Decentralized data
• Distributions of data different on different workers

•Protocol layer: Gossip protocol

•Network layer: Communication through sparsely
connected graph topology

Optimal Complexity in Decentralized Training. Yucheng Lu,
Christopher De Sa. In ICML: the Thirty-eighth International Conference
on Machine Learning, July 2021.

Local SGD

• Many parallel workers update their own copy of the
model by running SGD steps using their own local data

• Periodically the workers all average by taking an all-
reduce
• Like all-reduce SGD, but the all-reduce happens less frequently

than at every SGD iteration

• Can generalize better than large-batch SGD
• “Don’t use large mini-batches, use local SGD.” ICLR 2020

e.g. “Local SGD Converges
Fast and Communicates
Little.” ICLR 2019

So far: Data Parallelism

• The methods we’ve discussed are parallelizing
over examples
• Each worker is running the same computation to

compute gradients, just on different examples.

• This is an instance of data parallelism

•But data parallelism is not the only option…

Model Parallelism
• Main idea: partition the layers of a neural network among

different worker machines.

• This makes each worker responsible for a subset of the
parameters.

• Forward and backward signals running through the neural
network during backpropagation now also run across the
computer network between the different parallel machines.
• Particularly useful if the parameters won’t fit in memory on a single

machine.
• This is very important when we move to specialized machine learning

accelerator hardware, where we’re running on chips that typically have
limited memory and communication bandwidth.

Pipeline Parallelism

• Distribute a DNN over multiple
workers by assigning each
layer to its own worker.
• Each worker manages and

updates the parameters for its
own layer.
• Use microbatching to avoid stalls

• Advantage: workers no longer
need to store the entire model
• Can often keep parameters in

memory

From “GPipe: Easy Scaling with
Micro-Batch Pipeline Parallelism”

Fully Sharded Data Parallel

•Distribute a DNN over workers by assigning a
portion of each layer to each worker.
• Each worker manages and updates the parameters

for its own “shard”
• Use all-gather to manifest whole weight matrix on

all workers when it is time to run forward/backward
• Still parallelize over data!

•Advantage: workers no longer need to store
the entire model

https://engineering.fb.com/2021/07/15/open-source/fsdp/

https://engineering.fb.com/2021/07/15/open-source/fsdp/

Federated learning

• Sometimes, your data is inherently distributed
• For example, data gathered on people’s mobile phones
• For example, data measured by internet-of-things devices

• Rather than centralizing the data, may want to learn on
the distributed devices themselves
• E.g. to preserve the privacy of users

• This is called federated learning
• Lots of interest from industry right now

Distributed computing for
hyperparameter optimization
• This is something we’ve already talked about.

• Many commonly used hyperparameter optimization
algorithms, such as grid search and random search, are
very simple to distribute.
• They can easily be run on many parallel workers to get results

faster.

